{"title":"Dielectric Constant Calculation of Poly(vinylidene fluoride) Based on Finite Field and Density Functional Theory","authors":"Yong-Zhi Lin, Lu-Kun Feng, Ya-Dong Li, Chao-Fan Chang, Cai-Zhen Zhu, Ming-Liang Wang, Jian Xu","doi":"10.1007/s10118-024-3079-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we proposed a novel method that integrates density functional theory (DFT) with the finite field method to accurately estimate the polarizability and dielectric constant of polymers. Our approach effectively accounts for the influence of electronic and geometric conformation changed on the dielectric constant. We validated our method using polyethylene (PE) and polytetrafluoroethylene (PTFE) as benchmark materials, and found that it reliably predicted their dielectric constants. Furthermore, we explored the impact of conformation variations in poly(vinylidene fluoride) (PVDF) on its dielectric constant and polarizability. The resulting dielectric constants of <i>α</i>- and <i>γ</i>-PVDF (3.0) showed excellent agreement with crystalline PVDF in experiments. Our findings illuminate the relationship between PVDF’s structural properties and its electrical behavior, offering valuable insights for material design and applications.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3079-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we proposed a novel method that integrates density functional theory (DFT) with the finite field method to accurately estimate the polarizability and dielectric constant of polymers. Our approach effectively accounts for the influence of electronic and geometric conformation changed on the dielectric constant. We validated our method using polyethylene (PE) and polytetrafluoroethylene (PTFE) as benchmark materials, and found that it reliably predicted their dielectric constants. Furthermore, we explored the impact of conformation variations in poly(vinylidene fluoride) (PVDF) on its dielectric constant and polarizability. The resulting dielectric constants of α- and γ-PVDF (3.0) showed excellent agreement with crystalline PVDF in experiments. Our findings illuminate the relationship between PVDF’s structural properties and its electrical behavior, offering valuable insights for material design and applications.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.