Self-assembly induced by complexation of diblock copolyelectrolytes and oppositely charged homopolymers

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-01-26 DOI:10.1007/s10118-024-3080-1
Ling Zhao, Zhi-Yuan Yin, Jia-Di Jiang, Er-Qiang Chen, Shuang Yang
{"title":"Self-assembly induced by complexation of diblock copolyelectrolytes and oppositely charged homopolymers","authors":"Ling Zhao, Zhi-Yuan Yin, Jia-Di Jiang, Er-Qiang Chen, Shuang Yang","doi":"10.1007/s10118-024-3080-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers, in which the A blocks are negatively charged, and the B blocks are neutral. The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases. The microstructures and phase diagrams are calculated using self-consistent field theory (SCFT) based on an ion-pair model with an equilibrium constant <i>K</i> to characterize the strength of binding between positively and negatively charged monomers. The effects of the charge ratio, representing the ratio of charges from the homopolymer over all charges from polymers in the system, on the ordered structure are systematically studied, both for hydrophobic and hydrophilic A blocks. The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration. We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed, and the results are in good agreement with experiments. These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.</p>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10118-024-3080-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the solution self-assembly of a mixture of positively charged homopolymers and AB diblock copolymers, in which the A blocks are negatively charged, and the B blocks are neutral. The electrostatic complexation between oppositely charged polymers drives the formation of many ordered phases. The microstructures and phase diagrams are calculated using self-consistent field theory (SCFT) based on an ion-pair model with an equilibrium constant K to characterize the strength of binding between positively and negatively charged monomers. The effects of the charge ratio, representing the ratio of charges from the homopolymer over all charges from polymers in the system, on the ordered structure are systematically studied, both for hydrophobic and hydrophilic A blocks. The charge ratio plays an important role in determining the phase boundaries in the phase diagram of salt concentration versus polymer concentration. We also provide information about the varying tendency of the domain spacing and core size of the spherical phase when the charge ratio is changed, and the results are in good agreement with experiments. These studies provide a deep understanding of the self-assembled microstructures of oppositely charged diblock copolymer-homopolymer systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二嵌共聚电解质与带相反电荷的均聚物复配引起的自组装
我们研究了带正电的均聚物和 AB 二嵌段共聚物混合物在溶液中的自组装,其中 A 嵌段带负电,B 嵌段为中性。带相反电荷的聚合物之间的静电复合作用推动了许多有序相的形成。微观结构和相图是通过自洽场理论(SCFT)计算得出的,该理论基于离子对模型,并利用平衡常数 K 来描述带正电和负电单体之间的结合强度。对于疏水和亲水 A 嵌段,系统地研究了电荷比(代表来自均聚物的电荷与来自体系中所有聚合物的电荷之比)对有序结构的影响。电荷比在确定盐浓度与聚合物浓度相图中的相界方面起着重要作用。我们还提供了电荷比变化时球形相的畴间距和核心尺寸的变化趋势,结果与实验结果非常吻合。这些研究有助于深入理解带对位电荷的二嵌段共聚物-均聚物体系的自组装微结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Phase Patterning of Poly(oxime-ester) for Information Encryption by Photo-induced Isomerization Linear Viscoelasticity of ABA-type Vitrimer Based on Dioxaborolane Metathesis Polymer-to-Monomers Chemically Recyclable Poly(imide-imine) Plastics with Extreme-Condition Resistance and Flame Retardancy A Composite Elastomer with Photo-responsive Shape Memory and Programmable Hygroscopic Actuation Functionalities Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1