Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms

IF 2.5 4区 医学 Q3 ONCOLOGY Recent patents on anti-cancer drug discovery Pub Date : 2024-02-02 DOI:10.2174/0115748928269276231120103256
Yuxia Wu, Xiangyan Jiang, Zeyuan Yu, Zongrui Xing, Yong Ma, Huiguo Qing
{"title":"Mechanisms of Anti-PD Therapy Resistance in Digestive System Neoplasms","authors":"Yuxia Wu, Xiangyan Jiang, Zeyuan Yu, Zongrui Xing, Yong Ma, Huiguo Qing","doi":"10.2174/0115748928269276231120103256","DOIUrl":null,"url":null,"abstract":": Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115748928269276231120103256","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

: Digestive system neoplasms are highly heterogeneous and exhibit complex resistance mechanisms that render anti-programmed cell death protein (PD) therapies poorly effective. The tumor microenvironment (TME) plays a pivotal role in tumor development, apart from supplying energy for tumor proliferation and impeding the body's anti-tumor immune response, the TME actively facilitates tumor progression and immune escape via diverse pathways, which include the modulation of heritable gene expression alterations and the intricate interplay with the gut microbiota. In this review, we aim to elucidate the mechanisms underlying drug resistance in digestive tumors, focusing on immune-mediated resistance, microbial crosstalk, metabolism, and epigenetics. We will highlight the unique characteristics of each digestive tumor and emphasize the significance of the tumor immune microenvironment (TIME). Furthermore, we will discuss the current therapeutic strategies that hold promise for combination with cancer immune normalization therapies. This review aims to provide a thorough understanding of the resistance mechanisms in digestive tumors and offer insights into potential therapeutic interventions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
消化系统肿瘤的抗-PD疗法耐药性机制
:消化系统肿瘤具有高度异质性,表现出复杂的抗药性机制,导致抗程序性细胞死亡蛋白(PD)疗法效果不佳。肿瘤微环境(TME)在肿瘤发生发展中起着举足轻重的作用,除了为肿瘤增殖提供能量和阻碍机体的抗肿瘤免疫反应外,TME还通过多种途径积极促进肿瘤的发展和免疫逃逸,其中包括可遗传的基因表达改变的调控以及与肠道微生物群错综复杂的相互作用。在这篇综述中,我们旨在阐明消化道肿瘤耐药性的内在机制,重点关注免疫介导的耐药性、微生物串扰、新陈代谢和表观遗传学。我们将强调每种消化系统肿瘤的独特性,并强调肿瘤免疫微环境(TIME)的重要性。此外,我们还将讨论目前有望与癌症免疫正常化疗法相结合的治疗策略。本综述旨在提供对消化系统肿瘤抗药性机制的透彻理解,并为潜在的治疗干预提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
7.10%
发文量
55
审稿时长
3 months
期刊介绍: Aims & Scope Recent Patents on Anti-Cancer Drug Discovery publishes review and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of anti-cancer drug discovery e.g. on novel bioactive compounds, analogs, targets & predictive biomarkers & drug efficacy biomarkers. The journal also publishes book reviews of eBooks and books on anti-cancer drug discovery. A selection of important and recent patents on anti-cancer drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-cancer drug design and discovery. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to anti-cancer drug discovery.
期刊最新文献
Structure-Based Virtual Screening Identifying Novel FOXM1 Inhibitors as the Lead Compounds for Glioblastoma Development of a Prognostic Risk Model Based on Oxidative StressRelated Genes for Platinum-Resistant Ovarian Cancer Patients Stem Cell Markers in Neoplasms and their Relationship with Progression-free and Overall Survival in Patients with Recurrence Eukaryotic Initiation Factor 3C Can Affect the Proliferation and Invasion of Ovarian Cancer by Regulating the p53 Signalling Pathway Sema3A Inhibits Osteolytic Bone Metastasis of Non-small Cell Lung Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1