Background: Glioblastoma multiforme (GBM) is a highly heterogeneous brain tumor with limited treatment options and a poor prognosis. Cancer stem cells (CSCs) have emerged as a critical factor in GBM resistance and management, contributing to tumor growth, heterogeneity, and immunosuppression. The transcription factor FOXM1 has been identified as a key player in the progression, spread, and therapy resistance of various cancers, including GBM. Objective: In this research, the objective was to perform structure-based in silico screening with the aim of identifying natural compounds proficient in targeting the DNA-binding domain (DBD) of the FOXM1 protein. Methods: In this study, in silico tools were employed for screening a hundred naturally occurring compounds capable of targeting the FOXM1 protein. Through molecular docking analysis and pharmacokinetic profiling, five compounds were found to be promising candidates for extensive interaction with the FOXM1 protein. Further, these compounds were validated for the stability of the FOXM1-natural compound complex using molecular dynamics (MD) simulations. Results: Four compounds, such as Withaferin A, Bryophyllin A, Silybin B, Sanguinarine and Troglitazone (control compound), emerged as promising candidates with substantial interactions with FOXM1, suggesting their potential as a protein inhibitor based on molecular docking investigations. After MD simulation analysis, the FOXM1- Bryophyllin A complex was found to maintain the highest stability, and the other three ligands had moderate but comparable binding affinities over a period of 100 ns. Conclusion: This study provides valuable insights into four promising FOXM1 inhibitors that have the ability to induce senescence in GBM stem cells. These findings contribute to the development of structure-based designing strategies for FOXM1 inhibitors and innovative therapeutic approaches for the treatment of Glioblastoma.
{"title":"Structure-Based Virtual Screening Identifying Novel FOXM1 Inhibitors as the Lead Compounds for Glioblastoma","authors":"Kumari Swati, Rashi Srivastava, Kirti Agrawal, Siva Prasad Panda, Anand Parkash, Dhruv Kumar, Hailiang Chen","doi":"10.2174/0115748928289164240426110829","DOIUrl":"https://doi.org/10.2174/0115748928289164240426110829","url":null,"abstract":"Background: Glioblastoma multiforme (GBM) is a highly heterogeneous brain tumor with limited treatment options and a poor prognosis. Cancer stem cells (CSCs) have emerged as a critical factor in GBM resistance and management, contributing to tumor growth, heterogeneity, and immunosuppression. The transcription factor FOXM1 has been identified as a key player in the progression, spread, and therapy resistance of various cancers, including GBM. Objective: In this research, the objective was to perform structure-based in silico screening with the aim of identifying natural compounds proficient in targeting the DNA-binding domain (DBD) of the FOXM1 protein. Methods: In this study, in silico tools were employed for screening a hundred naturally occurring compounds capable of targeting the FOXM1 protein. Through molecular docking analysis and pharmacokinetic profiling, five compounds were found to be promising candidates for extensive interaction with the FOXM1 protein. Further, these compounds were validated for the stability of the FOXM1-natural compound complex using molecular dynamics (MD) simulations. Results: Four compounds, such as Withaferin A, Bryophyllin A, Silybin B, Sanguinarine and Troglitazone (control compound), emerged as promising candidates with substantial interactions with FOXM1, suggesting their potential as a protein inhibitor based on molecular docking investigations. After MD simulation analysis, the FOXM1- Bryophyllin A complex was found to maintain the highest stability, and the other three ligands had moderate but comparable binding affinities over a period of 100 ns. Conclusion: This study provides valuable insights into four promising FOXM1 inhibitors that have the ability to induce senescence in GBM stem cells. These findings contribute to the development of structure-based designing strategies for FOXM1 inhibitors and innovative therapeutic approaches for the treatment of Glioblastoma.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"34 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.2174/0115748928311077240424065832
Huishan Su, Yaxin Hou, Difan Zhu, Rongqing Pang, Shiyun Tian, Ran Ding, Ying Chen, Sihe Zhang
Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.
{"title":"Development of a Prognostic Risk Model Based on Oxidative StressRelated Genes for Platinum-Resistant Ovarian Cancer Patients","authors":"Huishan Su, Yaxin Hou, Difan Zhu, Rongqing Pang, Shiyun Tian, Ran Ding, Ying Chen, Sihe Zhang","doi":"10.2174/0115748928311077240424065832","DOIUrl":"https://doi.org/10.2174/0115748928311077240424065832","url":null,"abstract":"Introduction: Ovarian Cancer (OC) is a heterogeneous malignancy with poor outcomes. Oxidative stress plays a crucial role in developing drug resistance. However, the relationships between Oxidative Stress-related Genes (OSRGs) and the prognosis of platinum-resistant OC remain unclear. This study aimed to develop an OSRGs-based prognostic risk model for platinum-resistant OC patients. Methods: Gene Set Enrichment Analysis (GSEA) was performed to determine the expression difference of OSRGs between platinum-resistant and -sensitive OC patients. Cox regression analyses were used to identify the prognostic OSRGs and establish a risk score model. The model was validated by using an external dataset. Machine learning was used to determine the prognostic OSRGs associated with platinum resistance. Finally, the biological functions of selected OSRG were determined via in vitro cellular experiments. Results: Three gene sets associated with oxidative stress-related pathways were enriched (p < 0.05), and 105 OSRGs were found to be differentially expressed between platinum-resistant and - sensitive OC (p < 0.05). Twenty prognosis-associated OSRGs were identified (HR: 0:562-5.437; 95% CI: 0.319-20.148; p < 0.005), and seven independent OSRGs were used to construct a prognostic risk score model, which accurately predicted the survival of OC patients (1-, 3-, and 5-year AUC=0.69, 0.75, and 0.67, respectively). The prognostic potential of this model was confirmed in the validation cohort. Machine learning showed five prognostic OSRGs (SPHK1, PXDNL, C1QA, WRN, and SETX) to be strongly correlated with platinum resistance in OC patients. Cellular experiments showed that WRN significantly promoted the malignancy and platinum resistance of OC cells. Conclusion: The OSRGs-based risk score model can efficiently predict the prognosis and platinum resistance of OC patients. This model may improve the risk stratification of OC patients in the clinic.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"37 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.2174/0115748928277672240429065526
Aldo Eguiluz-Melendez, Carmen Rubio-Osornio, Artemio Rosiles-Abonce, Cesar Mendoza, Miryam Ramírez-Ordás, Romina Rivera-Cañas, Martha Tena-Suck, Juan Luis Gómez-Amador, Sergio Moreno-Jimenez
Background: Gliomas account for 30% of primary brain tumors in adults, and despite the scientific progress in the field, recurrence is prevalent. Glioma Stem Cells (GSCs) can generate tumor cells in vivo and in vitro and they are associated with treatment resistance, tumor progression, and recurrence. Furthermore, the expression of SOX transcription factors (SOX1, SOX2, SOX9) in these cells is responsible for maintaining an oncogenic genotype and is associated with an aggressive tumor phenotype. The relationship between SOX transcription factors and their prognostic role in recurrent gliomas has not been described in detail. Therefore, we set out to describe the relationship between SOX expression and Progression-free Survival (PFS) and Overall Survival (OS) in patients with recurrent gliomas. Methods: In this observational study, we have retrospectively analyzed 69 patients, of which 20 met the inclusion criteria. The clinical, radiological, and histopathological findings have been described, and survival analysis has been performed according to SOX expression for PFS and OS. Results: We found SOX1, SOX2, and SOX9 to show a non-statistically significant trend with increasing histopathological grade, co-expressed with Ki67, a cell proliferation factor. Conclusion: There has been found an inversely proportional correlation between the degree of immunopositivity of SOX1 and OS. A higher SOX1 immunopositivity could predict a worse clinical prognosis. There has also been found an interaction between a pluripotent genotype (GSC) and cell proliferation.
{"title":"Stem Cell Markers in Neoplasms and their Relationship with Progression-free and Overall Survival in Patients with Recurrence","authors":"Aldo Eguiluz-Melendez, Carmen Rubio-Osornio, Artemio Rosiles-Abonce, Cesar Mendoza, Miryam Ramírez-Ordás, Romina Rivera-Cañas, Martha Tena-Suck, Juan Luis Gómez-Amador, Sergio Moreno-Jimenez","doi":"10.2174/0115748928277672240429065526","DOIUrl":"https://doi.org/10.2174/0115748928277672240429065526","url":null,"abstract":"Background: Gliomas account for 30% of primary brain tumors in adults, and despite the scientific progress in the field, recurrence is prevalent. Glioma Stem Cells (GSCs) can generate tumor cells in vivo and in vitro and they are associated with treatment resistance, tumor progression, and recurrence. Furthermore, the expression of SOX transcription factors (SOX1, SOX2, SOX9) in these cells is responsible for maintaining an oncogenic genotype and is associated with an aggressive tumor phenotype. The relationship between SOX transcription factors and their prognostic role in recurrent gliomas has not been described in detail. Therefore, we set out to describe the relationship between SOX expression and Progression-free Survival (PFS) and Overall Survival (OS) in patients with recurrent gliomas. Methods: In this observational study, we have retrospectively analyzed 69 patients, of which 20 met the inclusion criteria. The clinical, radiological, and histopathological findings have been described, and survival analysis has been performed according to SOX expression for PFS and OS. Results: We found SOX1, SOX2, and SOX9 to show a non-statistically significant trend with increasing histopathological grade, co-expressed with Ki67, a cell proliferation factor. Conclusion: There has been found an inversely proportional correlation between the degree of immunopositivity of SOX1 and OS. A higher SOX1 immunopositivity could predict a worse clinical prognosis. There has also been found an interaction between a pluripotent genotype (GSC) and cell proliferation.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"155 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.2174/0115748928295263240402085411
Wei Wang, Kaicheng Shen, Ruyan Liu, Qi Zhou
Background: Osteolytic bone metastasis is a common complication of Non-Small Cell Lung Cancer (NSCLC), resulting in bone pain, hypercalcemia, and fractures that severely reduce the quality of life and survival time of patients. Semaphorins 3A (Sema3A) is one of the isoforms of the Semaphorins family, which is important in a variety of physiological and pathological processes, such as angiogenesis, immune regulation, and tumorigenesis. However, the role of Sema3A in the development of osteolytic bone metastasis in NSCLC is unknown. Methods: In this study, we established in vitro models simulating NSCLC cells in regulating the differentiation and maturation of osteoblast and osteoclast precursors and observed the differentiation of osteoblasts and osteoclasts. Results: The results demonstrated that the expression of Sema3A inhibited the proliferation, migration, and invasion of NSCLC cells, as well as promoted the differentiation of osteoblasts and inhibited the differentiation of osteoclasts, suggesting that Sema3A can inhibit the occurrence and development of osteolytic bone metastasis of NSCLC. Conclusion: This study provides a new idea for the clinical treatment of osteolytic bone metastasis in NSCLC.
{"title":"Sema3A Inhibits Osteolytic Bone Metastasis of Non-small Cell Lung Cancer","authors":"Wei Wang, Kaicheng Shen, Ruyan Liu, Qi Zhou","doi":"10.2174/0115748928295263240402085411","DOIUrl":"https://doi.org/10.2174/0115748928295263240402085411","url":null,"abstract":"Background: Osteolytic bone metastasis is a common complication of Non-Small Cell Lung Cancer (NSCLC), resulting in bone pain, hypercalcemia, and fractures that severely reduce the quality of life and survival time of patients. Semaphorins 3A (Sema3A) is one of the isoforms of the Semaphorins family, which is important in a variety of physiological and pathological processes, such as angiogenesis, immune regulation, and tumorigenesis. However, the role of Sema3A in the development of osteolytic bone metastasis in NSCLC is unknown. Methods: In this study, we established in vitro models simulating NSCLC cells in regulating the differentiation and maturation of osteoblast and osteoclast precursors and observed the differentiation of osteoblasts and osteoclasts. Results: The results demonstrated that the expression of Sema3A inhibited the proliferation, migration, and invasion of NSCLC cells, as well as promoted the differentiation of osteoblasts and inhibited the differentiation of osteoclasts, suggesting that Sema3A can inhibit the occurrence and development of osteolytic bone metastasis of NSCLC. Conclusion: This study provides a new idea for the clinical treatment of osteolytic bone metastasis in NSCLC.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"4 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140617664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.2174/0115748928292248240401051408
Jingkaiwen Zhang, Hanlin Yang, Fang Wen, Qing Li, Hao Luo, Dan Zi
Background: Eukaryotic Initiation Factor 3C (EIF3C) represents a pivotal translational initiation factor in eukaryotes and has been shown to facilitate the progression of various neoplasms. However, its mechanistic role in ovarian cancer remains elusive. Methods: In this research, the expression of EIF3C in ovarian cancer tissues was investigated using immunohistochemistry. In addition, the assessments were made on changes in cellular proliferation, invasion, and apoptotic abilities by reducing the expression of EIF3C in ovarian cancer cells. By utilizing microarray analysis, a comparison was performed between the downregulated EIF3C group and the control group of ovarian cancer cells, revealing the genes that were expressed differently. Furthermore, the signalling pathways associated with cellular proliferation were validated. The functional role of EIF3C in vivo was investigated using a xenograft tumour model. Results: The immunohistochemical analysis showed that elevated levels of EIF3C are linked to a negative prognosis in patients with ovarian cancer. Suppression of EIF3C greatly hindered the growth and spread of SK-OV-3 and HO-8910 cells while enhancing cellular programmed cell death. Following KEGG and GSEA enrichment analyses of differentially expressed genes, the p53 signalling pathway was found to be associated with EIF3C. Suppression of EIF3C resulted in the upregulation of the p53 signalling pathway, leading to the inhibition of cell proliferation and invasion and the promotion of apoptosis. In vivo experiments demonstrated that EIF3C knockdown suppressed the growth of subcutaneous tumours in nude mice. Conclusion: There is a correlation between overexpression of EIF3C in tumour tissues of ovarian cancer patients and this is associated with a poorer prognosis. By influencing the p53 signaling pathway, EIF3C facilitates the growth and infiltration of cells in ovarian cancer.
{"title":"Eukaryotic Initiation Factor 3C Can Affect the Proliferation and Invasion of Ovarian Cancer by Regulating the p53 Signalling Pathway","authors":"Jingkaiwen Zhang, Hanlin Yang, Fang Wen, Qing Li, Hao Luo, Dan Zi","doi":"10.2174/0115748928292248240401051408","DOIUrl":"https://doi.org/10.2174/0115748928292248240401051408","url":null,"abstract":"Background: Eukaryotic Initiation Factor 3C (EIF3C) represents a pivotal translational initiation factor in eukaryotes and has been shown to facilitate the progression of various neoplasms. However, its mechanistic role in ovarian cancer remains elusive. Methods: In this research, the expression of EIF3C in ovarian cancer tissues was investigated using immunohistochemistry. In addition, the assessments were made on changes in cellular proliferation, invasion, and apoptotic abilities by reducing the expression of EIF3C in ovarian cancer cells. By utilizing microarray analysis, a comparison was performed between the downregulated EIF3C group and the control group of ovarian cancer cells, revealing the genes that were expressed differently. Furthermore, the signalling pathways associated with cellular proliferation were validated. The functional role of EIF3C in vivo was investigated using a xenograft tumour model. Results: The immunohistochemical analysis showed that elevated levels of EIF3C are linked to a negative prognosis in patients with ovarian cancer. Suppression of EIF3C greatly hindered the growth and spread of SK-OV-3 and HO-8910 cells while enhancing cellular programmed cell death. Following KEGG and GSEA enrichment analyses of differentially expressed genes, the p53 signalling pathway was found to be associated with EIF3C. Suppression of EIF3C resulted in the upregulation of the p53 signalling pathway, leading to the inhibition of cell proliferation and invasion and the promotion of apoptosis. In vivo experiments demonstrated that EIF3C knockdown suppressed the growth of subcutaneous tumours in nude mice. Conclusion: There is a correlation between overexpression of EIF3C in tumour tissues of ovarian cancer patients and this is associated with a poorer prognosis. By influencing the p53 signaling pathway, EIF3C facilitates the growth and infiltration of cells in ovarian cancer.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"306 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.2174/0115748928283728240320063619
Xue Lin, Yaxuan Wang, Tongzuo Zhang, Xiaoyan Pu
: Fat-soluble vitamins (vitamins A, D, E, and K) are vital substances for maintaining normal physiological functions in the body. In recent years, scholars have explored the relationship between fat-soluble vitamins and the wasting disease - lung cancer. In this paper, we review recent studies on fat-soluble vitamins and lung cancer to clarify the relevance and molecular mechanisms of various vitamins in lung cancer, and whether the levels of fat-soluble vitamins in the body and vitamin supplementation affect the development of lung cancer. Our review could facilitate the discovery of biomarkers, potential therapeutic targets in lung cancer, and anti-tumor adjuvant drugs, in addition to highlighting other new ideas in the prevention and treatment of lung cancer.
{"title":"Fat-soluble Vitamins and Lung Cancer: Where We Are?","authors":"Xue Lin, Yaxuan Wang, Tongzuo Zhang, Xiaoyan Pu","doi":"10.2174/0115748928283728240320063619","DOIUrl":"https://doi.org/10.2174/0115748928283728240320063619","url":null,"abstract":": Fat-soluble vitamins (vitamins A, D, E, and K) are vital substances for maintaining normal physiological functions in the body. In recent years, scholars have explored the relationship between fat-soluble vitamins and the wasting disease - lung cancer. In this paper, we review recent studies on fat-soluble vitamins and lung cancer to clarify the relevance and molecular mechanisms of various vitamins in lung cancer, and whether the levels of fat-soluble vitamins in the body and vitamin supplementation affect the development of lung cancer. Our review could facilitate the discovery of biomarkers, potential therapeutic targets in lung cancer, and anti-tumor adjuvant drugs, in addition to highlighting other new ideas in the prevention and treatment of lung cancer.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"47 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL. Methods: Both HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice. Results and Discussion: Compared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both in vitro and in vivo. The results from the in vitro and in vivo studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase- 3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis. Conclusion: Our data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.
{"title":"Matrine Enhances the Antitumor Efficacy of Chidamide in CTCL by Promoting Apoptosis","authors":"Xinglan He, Guanyu Wang, Yimeng Wang, Chunlei Zhang","doi":"10.2174/0115748928289036240318040756","DOIUrl":"https://doi.org/10.2174/0115748928289036240318040756","url":null,"abstract":"Background: Cutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL. Methods: Both HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice. Results and Discussion: Compared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both in vitro and in vivo. The results from the in vitro and in vivo studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase- 3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis. Conclusion: Our data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"240 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.2174/0115748928284459240318070914
Guizhen Lyu
Background: Natural antisense long noncoding RNAs (lncRNAs) have the ability to modulate the expression of their corresponding sense genes. Consequently, any dysregulation of these lncRNAs can contribute to the development of pathological processes. The ambiguity surrounding the role of HMGA2-AS1 in gastric cancer (GC) requires further investigation. Objective: The aim of this study was to examine the involvement of HMGA2-AS1 in GC. Methods: The Kaplan-Meier method, Cox regression analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis were used in this study. These methods were used to evaluate the relationship between clinical characteristics and HMGA2-AS1 expression, prognostic factors, and the significant functional impact of HMGA2-AS1. HMGA2-AS1 levels in GC cell lines were validated using quantitative real-time polymerase chain reaction (qRT-PCR). Results: In patients diagnosed with GC, a significant correlation was observed between high expression of HMGA2-AS1 and the T stage (p = 0.01). Furthermore, the high expression of HMGA2- AS1 was identified as a prognostic indicator for poorer OS (p = 0.004), PFS (p = 0.006), and DSS (p = 0.011). Furthermore, the expression of HMGA2-AS1 (p < 0.001) demonstrated an independent association with OS in patients with GC. The presence of a low expression phenotype of HMGA2-AS1 was associated with differential enrichment of various pathways, including the focal adhesion-PI3K-Akt-mTOR signaling pathway, focal adhesion, ECM glycoproteins, MET promoting cell motility, among others. Furthermore, the expression of HMGA2-AS1 exhibited correlations with B cells, CD56 bright cells, and TFH and Th17 cells. Furthermore, GC cell lines demonstrated significantly higher expression of HMGA2-AS1. Conclusion: Elevated expression of HMGA2-AS1 in GC patients exhibited a significant correlation with unfavorable survival outcomes and increased immune infiltration. This suggests that HMGA2- AS1 holds promise as a potential prognostic biomarker and target for immunotherapy in GC.
{"title":"Bioinformatic Analysis and Experimental Validation of HMGA2-AS1 as a Prognostic Biomarker Associated with Immune Infiltration in Gastric Cancer","authors":"Guizhen Lyu","doi":"10.2174/0115748928284459240318070914","DOIUrl":"https://doi.org/10.2174/0115748928284459240318070914","url":null,"abstract":"Background: Natural antisense long noncoding RNAs (lncRNAs) have the ability to modulate the expression of their corresponding sense genes. Consequently, any dysregulation of these lncRNAs can contribute to the development of pathological processes. The ambiguity surrounding the role of HMGA2-AS1 in gastric cancer (GC) requires further investigation. Objective: The aim of this study was to examine the involvement of HMGA2-AS1 in GC. Methods: The Kaplan-Meier method, Cox regression analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis were used in this study. These methods were used to evaluate the relationship between clinical characteristics and HMGA2-AS1 expression, prognostic factors, and the significant functional impact of HMGA2-AS1. HMGA2-AS1 levels in GC cell lines were validated using quantitative real-time polymerase chain reaction (qRT-PCR). Results: In patients diagnosed with GC, a significant correlation was observed between high expression of HMGA2-AS1 and the T stage (p = 0.01). Furthermore, the high expression of HMGA2- AS1 was identified as a prognostic indicator for poorer OS (p = 0.004), PFS (p = 0.006), and DSS (p = 0.011). Furthermore, the expression of HMGA2-AS1 (p < 0.001) demonstrated an independent association with OS in patients with GC. The presence of a low expression phenotype of HMGA2-AS1 was associated with differential enrichment of various pathways, including the focal adhesion-PI3K-Akt-mTOR signaling pathway, focal adhesion, ECM glycoproteins, MET promoting cell motility, among others. Furthermore, the expression of HMGA2-AS1 exhibited correlations with B cells, CD56 bright cells, and TFH and Th17 cells. Furthermore, GC cell lines demonstrated significantly higher expression of HMGA2-AS1. Conclusion: Elevated expression of HMGA2-AS1 in GC patients exhibited a significant correlation with unfavorable survival outcomes and increased immune infiltration. This suggests that HMGA2- AS1 holds promise as a potential prognostic biomarker and target for immunotherapy in GC.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"27 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.2174/0115748928275772231226063458
Fan Wu, Suling Chen, Siqi Ren, Ruixin Wang, Yongmei Tan, Rongxi Chen, Bowen Li, Haotian Cao, Jinsong Li
Background: Cancer stem cells (CSCs) are a sub-population of cancer cells present in many kinds of malignant tumors that have the potential for self-proliferation and differentiation. These cells have been demonstrated as the main cause of tumor recurrence and metastasis. Strong evidence indicates that CSCs prefer reprogrammed fatty acid β-oxidation over oxidative phosphorylation for sustaining energy supply. Although mitochondrial dynamics participate in the regulation of cancer stemness, the correlation between the inhibition of mitochondrial fission and the regulation of lipid metabolism in CSCs remains poorly understood. Methods: The human tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SAS were used to obtain the CSCs by 3D Spheroid Culture. Then,western blot methods, RT-PCR and flow cytometry analysis were used to identify the TSCC CSCs. Next, Immunofluorescence method, transmission electron microscopy detection and western blot methods were used to evaluate the mitochondrial morphology and the quantity of lipid droplets (LDs). Lastly, lipidomic analysis was applied to explored the lipidomic alterations of TSCC CSCs with different mitochondrial morphology. Results: Here, we show that the quantity of lipid droplets containing intracellular triglyceride (TG) can be decreased by regulating mitochondrial morphology. Lipidomic analysis using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) also compared alterations in lipid metabolites in tongue squamous cell carcinoma (TSCC) CSCs, TSCC cells (non-CSCs), and CSCs with different mitochondrial morphology. Discriminant lipids of statistical significance were successfully annotated, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), sphingomyelins (SMs), triacylglycerols (TGs), phosphatidylglycerols (PGs), phosphatidylserines (PSs), lysophosphatidylcholines (LPCs), and lysophosphatidylethanolamines (LPEs). Conclusion: This study provides a deeper insight into the alterations of lipid metabolism associated with TSCC CSCs, non-CSCs and CSCs regulated by mitochondrial dynamics and thus serves as a guide toward novel targeted therapies.
背景:癌症干细胞(CSCs)是存在于多种恶性肿瘤中的癌细胞亚群,具有自我增殖和分化的潜能。这些细胞已被证实是肿瘤复发和转移的主要原因。有确凿证据表明,CSCs 在维持能量供应方面更喜欢重编程脂肪酸β氧化,而不是氧化磷酸化。虽然线粒体动力学参与了癌症干性的调控,但对线粒体裂变的抑制与 CSCs 脂质代谢调控之间的相关性仍知之甚少。研究方法以人舌鳞状细胞癌细胞系 CAL27 和 SAS 为研究对象,通过三维球形培养获得 CSCs。然后,使用 Western 印迹法、RT-PCR 和流式细胞术分析来鉴定 TSCC CSCs。然后,采用免疫荧光法、透射电子显微镜检测法和 Western 印迹法评估线粒体形态和脂滴数量。最后,应用脂质组学分析探讨了不同线粒体形态的TSCC CSCs的脂质组学改变。结果我们在这里发现,通过调节线粒体形态可以减少含有细胞内甘油三酯(TG)的脂滴数量。使用超高效液相色谱-质谱法(UPLC-MS)进行的脂质组学分析还比较了舌鳞状细胞癌(TSCC)CSCs、TSCC 细胞(非 CSCs)和线粒体形态不同的 CSCs 中脂质代谢物的变化。成功注释了具有统计学意义的区分脂质,包括磷脂酰胆碱(PCs)、磷脂酰乙醇胺(PEs)、鞘磷脂(SMs)、三酰甘油(TGs)、磷脂酰甘油(PGs)、磷脂酰丝氨酸(PSs)、溶血磷脂酰胆碱(LPCs)和溶血磷脂酰乙醇胺(LPEs)。结论本研究深入揭示了线粒体动力学调控的 TSCC CSCs、非 CSCs 和 CSCs 脂质代谢的改变,从而为新型靶向疗法提供指导。
{"title":"Regulating Lipid Metabolism via Mitochondrial Dynamics in Tongue Squamous Cell Carcinoma Cancer Stem Cells","authors":"Fan Wu, Suling Chen, Siqi Ren, Ruixin Wang, Yongmei Tan, Rongxi Chen, Bowen Li, Haotian Cao, Jinsong Li","doi":"10.2174/0115748928275772231226063458","DOIUrl":"https://doi.org/10.2174/0115748928275772231226063458","url":null,"abstract":"Background: Cancer stem cells (CSCs) are a sub-population of cancer cells present in many kinds of malignant tumors that have the potential for self-proliferation and differentiation. These cells have been demonstrated as the main cause of tumor recurrence and metastasis. Strong evidence indicates that CSCs prefer reprogrammed fatty acid β-oxidation over oxidative phosphorylation for sustaining energy supply. Although mitochondrial dynamics participate in the regulation of cancer stemness, the correlation between the inhibition of mitochondrial fission and the regulation of lipid metabolism in CSCs remains poorly understood. Methods: The human tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SAS were used to obtain the CSCs by 3D Spheroid Culture. Then,western blot methods, RT-PCR and flow cytometry analysis were used to identify the TSCC CSCs. Next, Immunofluorescence method, transmission electron microscopy detection and western blot methods were used to evaluate the mitochondrial morphology and the quantity of lipid droplets (LDs). Lastly, lipidomic analysis was applied to explored the lipidomic alterations of TSCC CSCs with different mitochondrial morphology. Results: Here, we show that the quantity of lipid droplets containing intracellular triglyceride (TG) can be decreased by regulating mitochondrial morphology. Lipidomic analysis using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) also compared alterations in lipid metabolites in tongue squamous cell carcinoma (TSCC) CSCs, TSCC cells (non-CSCs), and CSCs with different mitochondrial morphology. Discriminant lipids of statistical significance were successfully annotated, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), sphingomyelins (SMs), triacylglycerols (TGs), phosphatidylglycerols (PGs), phosphatidylserines (PSs), lysophosphatidylcholines (LPCs), and lysophosphatidylethanolamines (LPEs). Conclusion: This study provides a deeper insight into the alterations of lipid metabolism associated with TSCC CSCs, non-CSCs and CSCs regulated by mitochondrial dynamics and thus serves as a guide toward novel targeted therapies.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"14 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Saponin of Schizocapsa plantaginea Hance I (SSPH I),a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. Objective: To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and vivo. Methods: The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. Results: The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. Conclusion: SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.
背景:五味子皂苷 I(SSPH I)是五味子中发现的一种生物活性皂苷,对肺癌具有显著的抗肿瘤扩散和抗转移作用。研究目的探讨 SSPH I 对非小细胞肺癌(NSCLC)的抗转移作用,重点是上皮-间质转化(EMT)在体外和体内的作用。研究方法使用集落形成试验、CCK-8 试验、透孔试验和伤口愈合试验评估了浓度为 0、0.875、1.75 和 3.5 μM 的 SSPH I 对 A549 和 PC9 肺癌细胞的影响。PC9 和 A549 细胞的肌动蛋白细胞骨架重组是通过 FITC-花青素荧光染色法检测的。用 Western 印迹法检测了与 EMT 相关的蛋白(N-钙粘连蛋白、E-钙粘连蛋白和波形蛋白)、p- PI3K、p- AKT、p- mTOR 和 p- ERK1/2。利用 95-D 细胞建立了肺癌转移小鼠模型,并给小鼠灌胃 SSPH I 治疗。结果表明结果表明,在无毒性浓度下,SSPH I 能显著抑制 NSCLC 细胞的迁移和侵袭。此外,无毒浓度为 0.875 μM 的 SSPH I 可抑制 F-肌动蛋白细胞骨架组织。重要的是,在 A549 细胞中观察到 EMT 的减弱,上皮细胞标记 E-cadherin 表达上调,间质细胞标记波形蛋白和 Ncadherin 表达下调。机理研究显示,SSPH I 可抑制 MAPK/ERK1/2 和 PI3K/AKT/mTOR 信号通路。结论SSPH I通过抑制MAPK/ERK1/2和PI3K/AKT/mTOR信号通路,抑制了NSCLC细胞的EMT、迁移和侵袭,表明天然化合物SSPH I可用于抑制NSCLC的转移。
{"title":"SSPH I, A Novel Anti-cancer Saponin, Inhibits EMT and Invasion and Migration of NSCLC by Suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR Signaling Pathways","authors":"Jinling Zhou, Jian Luo, Rizhi Gan, Limin Zhi, Huan Zhou, Meixian Lv, Yinmei Huang, Gang Liang","doi":"10.2174/0115748928283132240103073039","DOIUrl":"https://doi.org/10.2174/0115748928283132240103073039","url":null,"abstract":"Background: Saponin of Schizocapsa plantaginea Hance I (SSPH I),a bioactive saponin found in Schizocapsa plantaginea, exhibits significant anti-proliferation and antimetastasis in lung cancer. Objective: To explore the anti-metastatic effects of SSPH I on non-small cell lung cancer (NSCLC) with emphasis on epithelial-mesenchymal transition (EMT) both in vitro and vivo. Methods: The effects of SSPH I at the concentrations of 0, 0.875,1.75, and 3.5 μM on A549 and PC9 lung cancer cells were evaluated using colony formation assay, CCK-8 assay, transwell assay and wound-healing assay. The actin cytoskeleton reorganization of PC9 and A549 cells was detected using the FITC-phalloidin fluorescence staining assay. The proteins related to EMT (N-cadherin, E-cadherin and vimentin), p- PI3K, p- AKT, p- mTOR and p- ERK1/2 were detected by Western blotting. A mouse model of lung cancer metastasis was established by utilizing 95-D cells, and the mice were treated with SSPH I by gavage. Results: The results suggested that SSPH I significantly inhibited the migration and invasion of NSCLC cells under a non-cytotoxic concentration. Furthermore, SSPH I at a non-toxic concentration of 0.875 μM inhibited F-actin cytoskeleton organization. Importantly, attenuation of EMT was observed in A549 cells with upregulation in the expression of epithelial cell marker E-cadherin and downregulation of the mesenchymal cell markers vimentin as well as Ncadherin. Mechanistic studies revealed that SSPH I inhibited MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways. Conclusion: SSPH I inhibited EMT, migration, and invasion of NSCLC cells by suppressing MAPK/ERK1/2 and PI3K/AKT/mTOR signaling pathways, suggesting that the natural compound SSPH I could be used for inhibiting metastasis of NSCLC.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":"31 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139661915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}