Development of Equal Proportional YSZ + Al2O3 Thermal Barrier Coating and Effect of Coating Thickness on the Corrosion Behaviour on Cast Iron Substrate

IF 2.1 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Oxidation of Metals Pub Date : 2024-02-01 DOI:10.1007/s11085-024-10222-5
Haridasa Nayak, Shanthala Kollur, K. Prasad, Suresh Erannagari, C. Durga Prasad, N. Nagabhushana
{"title":"Development of Equal Proportional YSZ + Al2O3 Thermal Barrier Coating and Effect of Coating Thickness on the Corrosion Behaviour on Cast Iron Substrate","authors":"Haridasa Nayak, Shanthala Kollur, K. Prasad, Suresh Erannagari, C. Durga Prasad, N. Nagabhushana","doi":"10.1007/s11085-024-10222-5","DOIUrl":null,"url":null,"abstract":"<p>Thermal barrier coating (TBC) degradation has been identified as a primary problem in the case of hot corrosion via Na<sub>2</sub>SO<sub>4</sub>–V<sub>2</sub>O<sub>5</sub> deposits. In comparison with the current top coat thickness, the current research presents a novel TBC that combines equal amounts of pure alumina (Al<sub>2</sub>O<sub>3</sub>) and yttria-stabilized zirconia (YSZ) with improved resistance to heat corrosion. Using the atmospheric plasma spray (APS) process, Al<sub>2</sub>O<sub>3</sub> and YSZ were sprayed as a bond coat on cast iron substrates using the multilayer bond coat materials Metco 410NS and Metco 452. Utilizing a cyclic method, the hot corrosion behaviour of TBC was examined at 850 °C using a corrosive salt consisting of 45 weight percent sodium sulphate (Na<sub>2</sub>SO<sub>4</sub>) and 55 weight percent vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) powders. In increments of 100 µm, the top coat thickness ranged from 100 to 300 µm. The results indicated that a 300 µm top coat thickness will result in a greater hot corrosion resistance. The disintegrate of the TBC systems is also caused by corrosive salts like Na<sub>2</sub>SO<sub>4</sub> and V<sub>2</sub>O<sub>5</sub>, which have the ability to dissolve the stabilizers in the zirconia coating at high temperatures.</p>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11085-024-10222-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal barrier coating (TBC) degradation has been identified as a primary problem in the case of hot corrosion via Na2SO4–V2O5 deposits. In comparison with the current top coat thickness, the current research presents a novel TBC that combines equal amounts of pure alumina (Al2O3) and yttria-stabilized zirconia (YSZ) with improved resistance to heat corrosion. Using the atmospheric plasma spray (APS) process, Al2O3 and YSZ were sprayed as a bond coat on cast iron substrates using the multilayer bond coat materials Metco 410NS and Metco 452. Utilizing a cyclic method, the hot corrosion behaviour of TBC was examined at 850 °C using a corrosive salt consisting of 45 weight percent sodium sulphate (Na2SO4) and 55 weight percent vanadium pentoxide (V2O5) powders. In increments of 100 µm, the top coat thickness ranged from 100 to 300 µm. The results indicated that a 300 µm top coat thickness will result in a greater hot corrosion resistance. The disintegrate of the TBC systems is also caused by corrosive salts like Na2SO4 and V2O5, which have the ability to dissolve the stabilizers in the zirconia coating at high temperatures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等比例 YSZ + Al2O3 隔热涂层的开发及涂层厚度对铸铁基底腐蚀行为的影响
热障涂层(TBC)降解已被确定为通过 Na2SO4-V2O5 沉积物发生热腐蚀的主要问题。与目前的面层厚度相比,目前的研究提出了一种新型热障涂层,它结合了等量的纯氧化铝(Al2O3)和钇稳定氧化锆(YSZ),具有更好的抗热腐蚀性能。通过大气等离子喷涂 (APS) 工艺,使用多层粘结涂层材料 Metco 410NS 和 Metco 452 将 Al2O3 和 YSZ 作为粘结涂层喷涂在铸铁基体上。采用循环方法,在 850 °C 温度下使用由 45 重量百分比的硫酸钠(Na2SO4)和 55 重量百分比的五氧化二钒(V2O5)粉末组成的腐蚀性盐对 TBC 的热腐蚀行为进行了检测。面层厚度以 100 微米为单位,从 100 微米到 300 微米不等。结果表明,表层厚度为 300 微米时,耐热腐蚀性能更强。TBC 系统的分解也是由 Na2SO4 和 V2O5 等腐蚀性盐类引起的,这些盐类能够在高温下溶解氧化锆涂层中的稳定剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oxidation of Metals
Oxidation of Metals 工程技术-冶金工程
CiteScore
5.10
自引率
9.10%
发文量
47
审稿时长
2.2 months
期刊介绍: Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.
期刊最新文献
Low Cycle Fatigue/Corrosion Interactions at 950 °C of AM1 Single Crystal Nickel-Based Superalloy Very Long Transient Oxidation of a Nickel-based Single-Crystal Superalloy at 900 °C and 850 °C Deep Intergranular Fluoride Attack by High-Temperature Corrosion on Alloy 625 by LiF in Air at 600 °C Chemical Degradation of the Ternary Al2O3–YAG–ZrO2 Eutectic Ceramic by Molten CMAS Low-Temperature Hot Corrosion Behavior of DS200 + Hf Nickel-Based Superalloy At 650 °C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1