Chemistry and biology of marine-derived Trichoderma metabolites

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL Natural Products and Bioprospecting Pub Date : 2024-02-02 DOI:10.1007/s13659-024-00433-3
Yin-Ping Song, Nai-Yun Ji
{"title":"Chemistry and biology of marine-derived Trichoderma metabolites","authors":"Yin-Ping Song,&nbsp;Nai-Yun Ji","doi":"10.1007/s13659-024-00433-3","DOIUrl":null,"url":null,"abstract":"<div><p>Marine-derived fungi of the genus <i>Trichoderma</i> have been surveyed for pharmaceuticals and agrochemicals since 1993, with various new secondary metabolites being characterized from the strains of marine animal, plant, sediment, and water origin. Chemical structures and biological activities of these metabolites are comprehensively reviewed herein up to the end of 2022 (covering 30 years). More than 70 strains that belong to at least 18 known <i>Trichoderma</i> species have been chemically investigated during this period. As a result, 445 new metabolites, including terpenes, steroids, polyketides, peptides, alkaloids, and others, have been identified, with over a half possessing antimicroalgal, zooplankton-toxic, antibacterial, antifungal, cytotoxic, anti-inflammatory, and other activities. The research is highlighted by the molecular diversity and antimicroalgal potency of terpenes and steroids. In addition, metabolic relevance along with co-culture induction in the production of new compounds is also concluded. <i>Trichoderma</i> strains of marine origin can transform and degrade heterogeneous molecules, but these functions need further exploration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13659-024-00433-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-024-00433-3","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Marine-derived fungi of the genus Trichoderma have been surveyed for pharmaceuticals and agrochemicals since 1993, with various new secondary metabolites being characterized from the strains of marine animal, plant, sediment, and water origin. Chemical structures and biological activities of these metabolites are comprehensively reviewed herein up to the end of 2022 (covering 30 years). More than 70 strains that belong to at least 18 known Trichoderma species have been chemically investigated during this period. As a result, 445 new metabolites, including terpenes, steroids, polyketides, peptides, alkaloids, and others, have been identified, with over a half possessing antimicroalgal, zooplankton-toxic, antibacterial, antifungal, cytotoxic, anti-inflammatory, and other activities. The research is highlighted by the molecular diversity and antimicroalgal potency of terpenes and steroids. In addition, metabolic relevance along with co-culture induction in the production of new compounds is also concluded. Trichoderma strains of marine origin can transform and degrade heterogeneous molecules, but these functions need further exploration.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋源毛霉代谢物的化学和生物学特性
摘要 自 1993 年以来,对毛霉属海洋源真菌进行了药物和农用化学品调查,从海洋动物、植物、沉积物和水源菌株中鉴定出了各种新的次级代谢物。本文全面综述了截至 2022 年底(历时 30 年)这些代谢物的化学结构和生物活性。在此期间,对属于至少 18 个已知毛霉菌种的 70 多个菌株进行了化学研究。结果发现了 445 种新的代谢物,包括萜烯类、甾体类、多酮类、肽类、生物碱类等,其中一半以上具有抗微生物藻类、浮游动物毒性、抗菌、抗真菌、细胞毒性、抗炎等活性。萜类和甾类化合物的分子多样性和抗微生物藻类的效力是这项研究的亮点。此外,还总结了新化合物生产过程中的代谢相关性以及共培养诱导。海洋来源的毛霉菌株可以转化和降解异质分子,但这些功能还需要进一步探索。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
期刊最新文献
Newly isolated terpenoids (covering 2019–2024) from Aspergillus species and their potential for the discovery of novel antimicrobials Asprecosides A–J, ten new pentacyclic triterpenoid glycosides with cytotoxic activity from the roots of Ilex asprella Emestrin-type epipolythiodioxopiperazines from Aspergillus nidulans with cytotoxic activities by regulating PI3K/AKT and mitochondrial apoptotic pathways Advanced RPL19-TRAPKI-seq method reveals mechanism of action of bioactive compounds Structure–function insights of natural Ganoderma polysaccharides: advances in biosynthesis and functional food applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1