A Murine Model of Maternal Micronutrient Deficiencies and Gut Inflammatory Host-microbe Interactions in the Offspring

IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Cellular and Molecular Gastroenterology and Hepatology Pub Date : 2024-01-01 DOI:10.1016/j.jcmgh.2024.01.018
Ravi Holani , Paula T. Littlejohn , Karlie Edwards , Charisse Petersen , Kyung-Mee Moon , Richard G. Stacey , Tahereh Bozorgmehr , Zachary J. Gerbec , Antonio Serapio-Palacios , Zakhar Krekhno , Katherine Donald , Leonard J. Foster , Stuart E. Turvey , B. Brett Finlay
{"title":"A Murine Model of Maternal Micronutrient Deficiencies and Gut Inflammatory Host-microbe Interactions in the Offspring","authors":"Ravi Holani ,&nbsp;Paula T. Littlejohn ,&nbsp;Karlie Edwards ,&nbsp;Charisse Petersen ,&nbsp;Kyung-Mee Moon ,&nbsp;Richard G. Stacey ,&nbsp;Tahereh Bozorgmehr ,&nbsp;Zachary J. Gerbec ,&nbsp;Antonio Serapio-Palacios ,&nbsp;Zakhar Krekhno ,&nbsp;Katherine Donald ,&nbsp;Leonard J. Foster ,&nbsp;Stuart E. Turvey ,&nbsp;B. Brett Finlay","doi":"10.1016/j.jcmgh.2024.01.018","DOIUrl":null,"url":null,"abstract":"<div><h3>Background &amp; Aims</h3><p>Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the <em>Enterobacteriaceae</em> family, remains undetermined due to lack of relevant animal models.</p></div><div><h3>Methods</h3><p>To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by <em>Enterobacteriaceae</em>, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, <em>Enterobacteriaceae</em> abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman’s correlation in meconium of children from the CHILD birth cohort.</p></div><div><h3>Results</h3><p>We developed an MMND model and reported an increase in colonic abundance of <em>Enterobacteriaceae</em> in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between <em>Enterobacteriaceae</em> and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of <em>NAD phosphate oxidase</em> (<em>Nox</em>) <em>1</em> contributed to the <em>Enterobacteriaceae</em> bloom.</p></div><div><h3>Conclusion</h3><p>This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 5","pages":"Pages 827-852"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X24000213/pdfft?md5=2ac9ea2e4d626e38a8ad7594e501a39f&pid=1-s2.0-S2352345X24000213-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X24000213","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & Aims

Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the Enterobacteriaceae family, remains undetermined due to lack of relevant animal models.

Methods

To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by Enterobacteriaceae, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, Enterobacteriaceae abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman’s correlation in meconium of children from the CHILD birth cohort.

Results

We developed an MMND model and reported an increase in colonic abundance of Enterobacteriaceae in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between Enterobacteriaceae and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of NAD phosphate oxidase (Nox) 1 contributed to the Enterobacteriaceae bloom.

Conclusion

This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
母体微量营养素缺乏与后代肠道炎症性宿主-微生物相互作用的小鼠模型
背景& 目的妊娠期微量营养素缺乏症(MND,即缺乏维生素和矿物质)是一个重大的公共卫生问题。以往的研究都是孤立地考虑微量营养素,然而,微量营养素缺乏症很少单独发生。由于缺乏相关的动物模型,并发的 MND 对公共卫生的影响(主要是肠杆菌科病原菌对粘膜定植的影响)仍未确定。此后,我们通过细菌培养、流式细胞术和质谱法分别测定了 MMND 母亲的后代(以下简称低微量营养素/LM 幼崽)肠道粘膜的肠杆菌粘附情况、相关炎症标志物和蛋白质组谱。结果我们建立了一个 MMND 模型,并报告了低微量营养素幼崽断奶时结肠中肠杆菌的丰度增加。CHILD 队列的研究结果证实,肠杆菌科细菌与微量营养素的可获得性呈负相关。此外,在 LM 幼鼠的结肠中,促炎细胞因子和淋巴细胞抗原 6 复合物高单核细胞及 M1 样巨噬细胞的浸润明显增加。从机理上讲,以烟酰胺腺嘌呤二核苷酸(NAD)H 脱氢酶表达量减少和 NAD 磷酸氧化酶(Nox)1 表达量增加为特征的线粒体功能障碍导致了肠杆菌的繁殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.00
自引率
2.80%
发文量
246
审稿时长
42 days
期刊介绍: "Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology. CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.
期刊最新文献
Mouse models for pancreatic ductal adenocarcinoma are affected by the cre-driver used to promote KRASG12D activation. PKMζ, a brain-specific PKCζ isoform, is required for glycolysis and myofibroblastic activation of hepatic stellate cells. Early-Onset Colorectal Cancer: Molecular Underpinnings Accelerating Occurrence. Normalization of CF Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of CF Mice. Mouse Models for Chronic Hepatitis B: Old Challenges, Novel Approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1