首页 > 最新文献

Cellular and Molecular Gastroenterology and Hepatology最新文献

英文 中文
Mouse models for pancreatic ductal adenocarcinoma are affected by the cre-driver used to promote KRASG12D activation. 胰腺导管腺癌小鼠模型受用于促进 KRASG12D 激活的 cre 驱动程序的影响。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-11-13 DOI: 10.1016/j.jcmgh.2024.101428
Fatemeh Mousavi, Joyce Thompson, Justine Lau, Nur Renollet, Mickenzie B Martin, Jake McGue, Oneeb Hassan, Timothy Frankel, Parisa Shooshtari, Christopher L Pin, Filip Bednar

Background and aims: The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRASG12D). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRASG12D). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRASG12D before and after induction of pancreatic injury.

Methods: We performed morphological and molecular analysis of three genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate KrasG12D in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models.

Results: Up to two months after tamoxifen induction of KRASG12D, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1acreERT pancreata within seven days and maintained for at least five weeks post-injury, which was not seen in the models with two functional Ptf1a alleles. RNA-seq analysis prior to injury induction suggested Ptf1acreERT and Mist1creERT mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models.

Conclusions: These findings suggest Ptf1a haploinsufficiency in Ptf1acreERT mouse models promotes KRASG12D priming of genes for promotion of PDAC.

背景和目的:基因工程小鼠模型可在时间和空间上激活致癌基因 KRAS (KRASG12D),其特征对胰腺导管腺癌的基础生物学产生了巨大影响。最常用的模型之一是在 Ptf1a 基因中定向插入 cre 重组酶。然而,这种方法会破坏 Ptf1a 基因,导致单倍体缺陷,从而可能影响对致癌 KRAS(KRASG12D)的敏感性。本研究旨在确定在诱导胰腺损伤前后,Ptf1a单倍体缺陷是否会影响尖突细胞对KRASG12D的反应:我们对三种基因工程小鼠模型进行了形态学和分子分析,这些模型表达了他莫昔芬诱导的cre-重组酶,以激活胰腺尖突细胞中的KrasG12D。cre-重组酶靶向于胰腺尖突特异性转录因子基因Ptf1a或Mist1/Bhlha15,或在BAC衍生的弹性蛋白酶转基因中表达。组织学和RNA-seq分析用于确定不同模型之间的差异:结果:他莫昔芬诱导KRASG12D两个月后,其形态学变化可忽略不计。然而,在Ptf1acreERT胰腺中,用cerulein诱导胰腺损伤会在七天内导致广泛的PanIN病变,并在损伤后至少维持五周,这在具有两个功能性Ptf1a等位基因的模型中是看不到的。损伤诱导前的RNA-seq分析表明,Ptf1acreERT和Mist1creERT小鼠具有独特的基因表达谱,可预测对损伤的不同反应。对胰腺组织的多重分析证实了两种模型之间不同的炎症反应:这些研究结果表明,Ptf1acreERT 小鼠模型中的 Ptf1a 单倍性缺失会促进 KRASG12D 启动基因,从而诱发 PDAC。
{"title":"Mouse models for pancreatic ductal adenocarcinoma are affected by the cre-driver used to promote KRASG12D activation.","authors":"Fatemeh Mousavi, Joyce Thompson, Justine Lau, Nur Renollet, Mickenzie B Martin, Jake McGue, Oneeb Hassan, Timothy Frankel, Parisa Shooshtari, Christopher L Pin, Filip Bednar","doi":"10.1016/j.jcmgh.2024.101428","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101428","url":null,"abstract":"<p><strong>Background and aims: </strong>The fundamental biology of pancreatic ductal adenocarcinoma has been greatly impacted by the characterization of genetically engineered mouse models that allow temporal and spatial activation of oncogenic KRAS (KRAS<sup>G12D</sup>). One of the most commonly used models involves targeted insertion of a cre-recombinase into the Ptf1a gene. However, this approach disrupts the Ptf1a gene, resulting in haploinsufficiency that likely affects sensitivity to oncogenic KRAS (KRAS<sup>G12D</sup>). This study aims to determine if Ptf1a haploinsufficiency affected the acinar cell response to KRAS<sup>G12D</sup> before and after induction of pancreatic injury.</p><p><strong>Methods: </strong>We performed morphological and molecular analysis of three genetically engineered mouse models that express a tamoxifen-inducible cre-recombinase to activate Kras<sup>G12D</sup> in acinar cells of the pancreas. The cre-recombinase was targeted to the acinar-specific transcription factor genes, Ptf1a or Mist1/Bhlha15, or expressed within a BAC-derived Elastase transgene. Histological and RNA-seq analyses were used to delineate differences between the models.</p><p><strong>Results: </strong>Up to two months after tamoxifen induction of KRAS<sup>G12D</sup>, morphological changes were negligible. However, induction of pancreatic injury by cerulein resulted in widespread PanIN lesions in Ptf1a<sup>creERT</sup> pancreata within seven days and maintained for at least five weeks post-injury, which was not seen in the models with two functional Ptf1a alleles. RNA-seq analysis prior to injury induction suggested Ptf1a<sup>creERT</sup> and Mist1<sup>creERT</sup> mice have unique profiles of gene expression that predict a differential response to injury. Multiplex analysis of pancreatic tissue confirmed different inflammatory responses between the models.</p><p><strong>Conclusions: </strong>These findings suggest Ptf1a haploinsufficiency in Ptf1a<sup>creERT</sup> mouse models promotes KRAS<sup>G12D</sup> priming of genes for promotion of PDAC.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101428"},"PeriodicalIF":7.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PKMζ, a brain-specific PKCζ isoform, is required for glycolysis and myofibroblastic activation of hepatic stellate cells. 肝星状细胞的糖酵解和肌成纤维细胞活化需要脑特异性 PKCζ 同工酶 PKMζ。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-11-12 DOI: 10.1016/j.jcmgh.2024.101429
Xianghu Wang, Yuanguo Wang, Bing Bai, Aurpita Shaha, Wenming Bao, Lianping He, Tian Wang, Gaspar J Kitange, Ningling Kang

Background & aims: TGFβ1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs.

Methods: HSC expression of protein kinase M zeta isoform (PKMζ) was detected by RT-PCR, Western blotting, and immunofluorescence. PKMζ level was manipulated by shRNA or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study.

Results: Primary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared to quiescent HSC. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice.

Conclusions: Since HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.

背景与目的:TGFβ1可诱导肝星状细胞(HSCs)糖酵解和HSC活化所需的葡萄糖转运体1(Glut1)在质膜(PM)上聚集。方法:通过 RT-PCR、Western 印迹和免疫荧光检测 HSC 蛋白激酶 M zeta 异构体(PKMζ)的表达。通过 shRNA 或过表达操纵 PKMζ 的水平;通过细胞表达活化标志物评估造血干细胞的活化;通过生物素化、基于 2-NBDG 的检测和海马糖酵解压力试验分析造血干细胞的 PM Glut1、葡萄糖摄取和糖酵解。通过定点突变技术创建了血管舒张剂刺激磷酸化蛋白(VASP)的磷酸化突变体。通过 RNA 测序获得 TGFβ 转录组。利用单细胞RNA测序数据集和免疫荧光分析结直肠肝转移癌相关成纤维细胞(CAFs)中PKMζ的表达。通过肿瘤/造血干细胞共植研究确定了造血干细胞PKMζ的功能:结果:原代人和小鼠造血干细胞表达PKMζ,但不表达全长PKCζ。PKMζ的敲除抑制了TGFβ1诱导的Glut1、糖酵解和造血干细胞活化,而PKMζ的过表达则增强了PM的积累。从机理上讲,PKMζ 与 VASP 结合并诱导 VASP 在丝氨酸 157 和 239 处磷酸化,从而促进 Glut1 在造血干细胞的 PM 上锚定/对接。与静止造血干细胞相比,PKMζ在小鼠和患者结直肠肝转移瘤的CAF中表达增加。靶向PKMζ可抑制转录组、造血干细胞的CAF激活以及小鼠结直肠肿瘤的生长:结论:由于造血干细胞也是肝纤维化的主要促成因素,我们的数据强调了PKMζ和VASP是抑制代谢重编程、造血干细胞活化、肝纤维化和肝脏促转移微环境的靶点。
{"title":"PKMζ, a brain-specific PKCζ isoform, is required for glycolysis and myofibroblastic activation of hepatic stellate cells.","authors":"Xianghu Wang, Yuanguo Wang, Bing Bai, Aurpita Shaha, Wenming Bao, Lianping He, Tian Wang, Gaspar J Kitange, Ningling Kang","doi":"10.1016/j.jcmgh.2024.101429","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101429","url":null,"abstract":"<p><strong>Background & aims: </strong>TGFβ1 induces plasma membrane (PM) accumulation of glucose transporter 1 (Glut1) required for glycolysis of hepatic stellate cells (HSCs) and HSC activation. This study aimed to understand how Glut1 is anchored/docked onto the PM of HSCs.</p><p><strong>Methods: </strong>HSC expression of protein kinase M zeta isoform (PKMζ) was detected by RT-PCR, Western blotting, and immunofluorescence. PKMζ level was manipulated by shRNA or overexpression; HSC activation was assessed by cell expression of activation markers; PM Glut1, glucose uptake, and glycolysis of HSCs were analyzed by biotinylation, 2-NBDG-based assay, and Seahorse Glycolysis Stress Test. Phospho-mutants of vasodilator-stimulated phosphorylated protein (VASP) were created by site-directed mutagenesis. TGFβ transcriptome was obtained by RNA sequencing. Single-cell RNA sequencing datasets and immunofluorescence were leveraged to analyze PKMζ expression in cancer-associated fibroblasts (CAFs) of colorectal liver metastases. Function of HSC PKMζ was determined by tumor/HSC co-implantation study.</p><p><strong>Results: </strong>Primary human and murine HSCs express PKMζ, but not full-length PKCζ. PKMζ knockdown suppresses whereas PKMζ overexpression potentiates PM accumulation of Glut1, glycolysis, and HSC activation induced by TGFβ1. Mechanistically, PKMζ binds to and induces VASP phosphorylation at serines 157 and 239 facilitating anchoring/docking of Glut1 onto the PM of HSCs. PKMζ expression is increased in the CAFs of murine and patient colorectal liver metastases compared to quiescent HSC. Targeting PKMζ suppresses transcriptome, CAF activation of HSCs, and colorectal tumor growth in mice.</p><p><strong>Conclusions: </strong>Since HSCs are also a major contributor of liver fibrosis, our data highlight PKMζ and VASP as targets to inhibit metabolic reprogramming, HSC activation, liver fibrosis, and the pro-metastatic microenvironment of the liver.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101429"},"PeriodicalIF":7.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-Onset Colorectal Cancer: Molecular Underpinnings Accelerating Occurrence. 早发结直肠癌:加速发病的分子基础。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-11-05 DOI: 10.1016/j.jcmgh.2024.101425
Atehkeng Zinkeng, F Lloyd Taylor, Samuel H Cheong, Heyu Song, Juanita L Merchant

The onset of colorectal cancer (CRC) in patients under 50 continues to rapidly increase. This study highlights the epidemiological changes, risk factors, clinical characteristics, and molecular profiles prevalent in early-onset colorectal cancer (EO-CRC) patients, and identifies key areas for future research. It has been noted that only a small fraction of EO-CRC cases is attributed to known hereditary mutations and fit the canonical pathway of late onset colorectal cancer (LOCRC) development. To highlight this, we review the genetic and epigenetic modifications specific to EO-CRC. We also discuss the synergetic effect of single nucleotide polymorphisms (SNPs) and environmental factors on the early onset of CRC. Additionally, we discuss the potential of non-invasive biomarker assays to enhance early detection, screening, diagnosis, and prognostic outcome predictions.

50 岁以下患者罹患结直肠癌(CRC)的人数持续快速增长。本研究强调了早发结直肠癌(EO-CRC)患者的流行病学变化、风险因素、临床特征和分子特征,并确定了未来研究的关键领域。人们注意到,EO-CRC 病例中只有一小部分归因于已知的遗传突变,并符合晚发结直肠癌(LOCRC)的典型发展途径。为了强调这一点,我们回顾了 EO-CRC 特有的遗传和表观遗传修饰。我们还讨论了单核苷酸多态性(SNPs)和环境因素对 CRC 早期发病的协同作用。此外,我们还讨论了非侵入性生物标志物检测在加强早期检测、筛查、诊断和预后结果预测方面的潜力。
{"title":"Early-Onset Colorectal Cancer: Molecular Underpinnings Accelerating Occurrence.","authors":"Atehkeng Zinkeng, F Lloyd Taylor, Samuel H Cheong, Heyu Song, Juanita L Merchant","doi":"10.1016/j.jcmgh.2024.101425","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101425","url":null,"abstract":"<p><p>The onset of colorectal cancer (CRC) in patients under 50 continues to rapidly increase. This study highlights the epidemiological changes, risk factors, clinical characteristics, and molecular profiles prevalent in early-onset colorectal cancer (EO-CRC) patients, and identifies key areas for future research. It has been noted that only a small fraction of EO-CRC cases is attributed to known hereditary mutations and fit the canonical pathway of late onset colorectal cancer (LOCRC) development. To highlight this, we review the genetic and epigenetic modifications specific to EO-CRC. We also discuss the synergetic effect of single nucleotide polymorphisms (SNPs) and environmental factors on the early onset of CRC. Additionally, we discuss the potential of non-invasive biomarker assays to enhance early detection, screening, diagnosis, and prognostic outcome predictions.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101425"},"PeriodicalIF":7.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalization of CF Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of CF Mice. CF免疫系统正常化可逆转肠道中性粒细胞炎症并显著提高CF小鼠的存活率
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-11-05 DOI: 10.1016/j.jcmgh.2024.101424
Callie E Scull, Yawen Hu, Scott Jennings, Guoshun Wang

Background & aims: Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis.

Methods: CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction.

Results: Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice.

Conclusion: CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.

背景与目的:囊性纤维化(CF)是一种常染色体隐性遗传疾病,影响多个器官系统。CF肠道疾病发病较早,表现为肠道细菌过度生长/菌群失调、中性粒细胞炎症和阻塞。由于无法解决的感染和炎症反映了宿主免疫缺陷,我们试图确定受CF影响的免疫系统在CF肠道疾病发病机制中是否扮演重要角色:方法:CF 小鼠和同胞野生型(WT)小鼠进行了骨髓相互移植。方法:CF 小鼠和同胞野生型(WT)小鼠接受了互补骨髓移植,免疫重建后,对它们的死亡率、肠道转运、粪便炎症标志物和粘膜免疫细胞组成进行了评估。此外,还进行了中性粒细胞相互输血,以确定中性粒细胞功能是否会影响肠道运动。此外,还比较了CF和WT中性粒细胞中诱导一氧化氮合酶(iNOS)的表达和一氧化氮(NO)的产生。最后,测试了特异性 iNOS 抑制剂 1400W 对预防 CF 肠梗阻的作用:结果:CF小鼠的免疫恢复逆转了肠道中性粒细胞炎症,改善了肠道运动障碍,并使小鼠免于死亡。向CF小鼠输注WT中性粒细胞可改善肠道运动迟缓。CF 中性粒细胞表达的 iNOS 明显更多,产生的 NO 也明显更多。药物阻断 iNOS 能明显改善 CF 小鼠的肠蠕动和存活率:结论:CF 免疫缺陷在 CF 肠道疾病的发展中起着关键作用。结论:CF 免疫缺陷在 CF 肠道疾病的发生发展中起着关键作用。炎症细胞中的 iNOS 被激活后会产生过量的 NO,从而减缓肠道蠕动,促进 CF 肠道麻痹和阻塞。因此,使 CF 免疫系统恢复正常可能是治疗 CF 肠道疾病的一种新疗法。
{"title":"Normalization of CF Immune System Reverses Intestinal Neutrophilic Inflammation and Significantly Improves the Survival of CF Mice.","authors":"Callie E Scull, Yawen Hu, Scott Jennings, Guoshun Wang","doi":"10.1016/j.jcmgh.2024.101424","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101424","url":null,"abstract":"<p><strong>Background & aims: </strong>Cystic fibrosis (CF) is an autosomal recessive genetic disorder, affecting multiple organ systems. CF intestinal disease develops early, manifesting as intestinal bacterial overgrowth/dysbiosis, neutrophilic inflammation and obstruction. As unresolvable infection and inflammation reflect host immune deficiency, we sought to determine if the CF-affected immune system plays any significant role in CF intestinal disease pathogenesis.</p><p><strong>Methods: </strong>CF and sibling wild-type (WT) mice underwent reciprocal bone marrow transplantation. After immune reconstitution, their mortality, intestinal transit, fecal inflammatory markers, and mucosal immune cell composition were assessed. Moreover, reciprocal neutrophil transfusion was conducted to determine if neutrophil function affects intestinal movement. Furthermore, expression of induced nitric oxide synthase (iNOS) and production of nitric oxide (NO) in CF and WT neutrophils were compared. Lastly, specific iNOS inhibitor 1400W was tested to prevent CF intestinal obstruction.</p><p><strong>Results: </strong>Immune restoration in CF mice reversed the intestinal neutrophilic inflammation, improved the intestinal dysmotility, and rescued the mice from mortality. Transfusion of WT neutrophils into CF mice ameliorated the retarded bowel movement. CF neutrophils expressed significantly more iNOS and produced significantly more NO. Pharmaceutical blocking of iNOS significantly improved intestinal transit and survival of CF mice.</p><p><strong>Conclusion: </strong>CF immune defect plays a critical role in CF intestinal disease development. Activation of iNOS in inflammatory cells produces excessive NO, slows the bowel movement, and facilitates intestinal paralysis and obstruction in CF. Thus, normalization of the CF immune system may offer a novel therapy to treat CF intestinal disease.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101424"},"PeriodicalIF":7.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mouse Models for Chronic Hepatitis B: Old Challenges, Novel Approaches. 慢性乙型肝炎小鼠模型:老挑战,新方法。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-30 DOI: 10.1016/j.jcmgh.2024.101421
Elias Broeckhoven, Kai Dallmeier
{"title":"Mouse Models for Chronic Hepatitis B: Old Challenges, Novel Approaches.","authors":"Elias Broeckhoven, Kai Dallmeier","doi":"10.1016/j.jcmgh.2024.101421","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101421","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101421"},"PeriodicalIF":7.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Splicing, Signaling, and Survival: The Role of RBM39 in Cholangiocarcinoma Progression. 剪接、信号转导与生存:RBM39 在胆管癌进展中的作用
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-26 DOI: 10.1016/j.jcmgh.2024.101419
Meng Xu, Diego F Calvisi, Xin Chen
{"title":"Splicing, Signaling, and Survival: The Role of RBM39 in Cholangiocarcinoma Progression.","authors":"Meng Xu, Diego F Calvisi, Xin Chen","doi":"10.1016/j.jcmgh.2024.101419","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101419","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101419"},"PeriodicalIF":7.1,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. 复原之墙:肠道上皮细胞如何防止肠道炎症侵袭?
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.jcmgh.2024.101423
Eva Liebing, Susanne M Krug, Markus F Neurath, Britta Siegmund, Christoph Becker

The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.

肠上皮构成了固有层中的肠道免疫系统与外部世界(肠腔)之间的边界,而外部世界则包含多种多样的微生物和环境抗原。这种上皮单层由特化细胞组成,具有极高的更替率。分化的上皮细胞会在几天内从绒毛顶端释放到肠腔中,这一过程需要严格的调节。上皮屏障功能失调会增加肠道通透性,为管腔抗原进入肠道血清铺平道路。利伯昆隐窝底部的干细胞可源源不断地提供成熟的上皮细胞。分化的 IECs 表现出多种多样的机制,能够与周围的细胞进行交流,抵御微生物的侵袭,并协调营养吸收和激素平衡。此外,紧密连接可调节细胞旁通透性,破坏紧密连接可导致肠道屏障受损,使炎症发展或进一步恶化。IECs 提供了一个交流平台,通过这个平台,IECs 与免疫细胞、神经细胞和结缔组织细胞等一系列实体保持平衡。这种平衡状态会在疾病(如炎症性肠病(IBD))中被破坏。IBD 患者的肠道屏障受损,细胞通讯失调,细胞异常增殖和消亡。本综述总结了维护肠道上皮屏障完整性的各种细胞和分子机制,并说明了这些机制在 IBD 等疾病中是如何被破坏的。
{"title":"Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut.","authors":"Eva Liebing, Susanne M Krug, Markus F Neurath, Britta Siegmund, Christoph Becker","doi":"10.1016/j.jcmgh.2024.101423","DOIUrl":"10.1016/j.jcmgh.2024.101423","url":null,"abstract":"<p><p>The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101423"},"PeriodicalIF":7.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mrgprb2 Signaling in Colitis: Mast Cell Activation Beyond IgE. 结肠炎中的 Mrgprb2 信号传导:超越 IgE 的肥大细胞活化
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.jcmgh.2024.101408
Thiago Trovati Maciel
{"title":"Mrgprb2 Signaling in Colitis: Mast Cell Activation Beyond IgE.","authors":"Thiago Trovati Maciel","doi":"10.1016/j.jcmgh.2024.101408","DOIUrl":"https://doi.org/10.1016/j.jcmgh.2024.101408","url":null,"abstract":"","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101408"},"PeriodicalIF":7.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatitis B Virus-KMT2B Integration Drives Hepatic Oncogenic Processes in a Human Gene-edited Induced Pluripotent Stem Cells-derived Model. 在人类基因编辑 iPSC 衍生模型中,HBV-KMT2B 整合驱动肝脏致癌过程。
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.jcmgh.2024.101422
Jun Tsuchiya, Masato Miyoshi, Sei Kakinuma, Fukiko Kawai-Kitahata, Akihide Kamiya, Taro Shimizu, Ayako Sato, Keiya Watakabe, Tomohiro Mochida, Kento Inada, Rion Kamimae, Shun Kaneko, Miyako Murakawa, Sayuri Nitta, Mina Nakagawa, Mamoru Watanabe, Yasuhiro Asahina, Ryuichi Okamoto

Background & aims: Hepatitis B virus (HBV)-DNA integration into the host genome contributes to hepatocellular carcinoma (HCC) development. KMT2B is the second most frequent locus of HBV-DNA integration in HCC; however, its role and function remain unclear. We aimed to clarify the impact of HBV-KMT2B integration in HCC development using a human genome-edited induced pluripotent stem cells (iPSCs) model.

Methods: Based on the genetic information on HBV-KMT2B integration in HCC, we determined its complete DNA sequence and transcript variants. To exclude the effect of other oncogenic mutations, we reproduced HBV integration in healthy donor iPSCs with an intact genome and analyzed its effects using iPSC-derived hepatic progenitor cells (HPCs) and hepatocytes (iPS-Heps).

Results: The reproduced HBV-KMT2B integration significantly upregulated the proliferation of hepatic cells. Comprehensive transcriptional and epigenetic analyses revealed enhanced expression of cell cycle-related genes in hepatic cells with HBV-KMT2B integration based on perturbation of histone 3 lysine 4 tri-methylation(H3K4me3), mimicking that in the original HCC sample. Long-read RNA-sequence detected the common KMT2B transcript variants in the HCC sample and HPCs. Overexpression of the truncated variant significantly enhanced proliferation of hepatic cells, whereas HBV-KMT2B fusion transcripts did not enhance proliferation. HBV-KMT2B-integrated HPCs exhibited replication stress and DNA damage, indicating that our model initiated the process of hepatocarcinogenesis due to abnormally promoted KMT2B function.

Conclusions: Our disease model using genetically engineered iPSCs provides the first insight into both the KMT2B function in HCC development and the oncogenic processes by HBV-KMT2B integration. We clarified the novel oncogenic mechanism in HBV-related HCC due to aberrant KMT2B function.

背景与目的:乙型肝炎病毒(HBV)DNA整合到宿主基因组中会导致肝细胞癌(HCC)的发生。KMT2B 是 HBV-DNA 整合在 HCC 中的第二大常见位点,但其作用和功能仍不清楚。我们的目的是利用人类基因组编辑的诱导多能干细胞(iPSCs)模型来阐明 HBV-KMT2B 整合在 HCC 发育中的影响:方法:根据HBV-KMT2B在HCC中整合的基因信息,我们确定了其完整的DNA序列和转录本变异。为了排除其他致癌突变的影响,我们在基因组完整的健康供体 iPSCs 中复制了 HBV 整合,并使用 iPSC 衍生的肝祖细胞(HPCs)和肝细胞(iPS-Heps)分析了其影响:结果:再现的 HBV-KMT2B 整合能显著提高肝细胞的增殖。综合转录和表观遗传学分析表明,基于组蛋白 3 赖氨酸 4 三甲基化(H3K4me3)的扰动,HBV-KMT2B 整合的肝细胞中细胞周期相关基因的表达增强,与原始 HCC 样本中的表达相似。长读 RNA 序列检测了 HCC 样本和 HPCs 中常见的 KMT2B 转录本变异。截短变体的过表达会显著增强肝细胞的增殖,而 HBV-KMT2B 融合转录本不会增强增殖。整合了HBV-KMT2B的HPC表现出复制应激和DNA损伤,表明我们的模型由于KMT2B功能的异常促进而启动了肝癌的发生过程:我们利用基因工程 iPSCs 建立的疾病模型首次揭示了 KMT2B 在 HCC 发育中的功能以及 HBV-KMT2B 整合的致癌过程。我们阐明了因 KMT2B 功能异常而导致的 HBV 相关 HCC 的新型致癌机制。
{"title":"Hepatitis B Virus-KMT2B Integration Drives Hepatic Oncogenic Processes in a Human Gene-edited Induced Pluripotent Stem Cells-derived Model.","authors":"Jun Tsuchiya, Masato Miyoshi, Sei Kakinuma, Fukiko Kawai-Kitahata, Akihide Kamiya, Taro Shimizu, Ayako Sato, Keiya Watakabe, Tomohiro Mochida, Kento Inada, Rion Kamimae, Shun Kaneko, Miyako Murakawa, Sayuri Nitta, Mina Nakagawa, Mamoru Watanabe, Yasuhiro Asahina, Ryuichi Okamoto","doi":"10.1016/j.jcmgh.2024.101422","DOIUrl":"10.1016/j.jcmgh.2024.101422","url":null,"abstract":"<p><strong>Background & aims: </strong>Hepatitis B virus (HBV)-DNA integration into the host genome contributes to hepatocellular carcinoma (HCC) development. KMT2B is the second most frequent locus of HBV-DNA integration in HCC; however, its role and function remain unclear. We aimed to clarify the impact of HBV-KMT2B integration in HCC development using a human genome-edited induced pluripotent stem cells (iPSCs) model.</p><p><strong>Methods: </strong>Based on the genetic information on HBV-KMT2B integration in HCC, we determined its complete DNA sequence and transcript variants. To exclude the effect of other oncogenic mutations, we reproduced HBV integration in healthy donor iPSCs with an intact genome and analyzed its effects using iPSC-derived hepatic progenitor cells (HPCs) and hepatocytes (iPS-Heps).</p><p><strong>Results: </strong>The reproduced HBV-KMT2B integration significantly upregulated the proliferation of hepatic cells. Comprehensive transcriptional and epigenetic analyses revealed enhanced expression of cell cycle-related genes in hepatic cells with HBV-KMT2B integration based on perturbation of histone 3 lysine 4 tri-methylation(H3K4me3), mimicking that in the original HCC sample. Long-read RNA-sequence detected the common KMT2B transcript variants in the HCC sample and HPCs. Overexpression of the truncated variant significantly enhanced proliferation of hepatic cells, whereas HBV-KMT2B fusion transcripts did not enhance proliferation. HBV-KMT2B-integrated HPCs exhibited replication stress and DNA damage, indicating that our model initiated the process of hepatocarcinogenesis due to abnormally promoted KMT2B function.</p><p><strong>Conclusions: </strong>Our disease model using genetically engineered iPSCs provides the first insight into both the KMT2B function in HCC development and the oncogenic processes by HBV-KMT2B integration. We clarified the novel oncogenic mechanism in HBV-related HCC due to aberrant KMT2B function.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101422"},"PeriodicalIF":7.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Human Milk-derived Peptide Drives Rapid Regulation of Macrophage Inflammation Responses in the Neonatal Intestine. 人乳衍生肽驱动新生儿肠道巨噬细胞炎症反应的快速调节
IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Pub Date : 2024-10-15 DOI: 10.1016/j.jcmgh.2024.101420
Fuqiang Yuan, Xu Han, Masha Huang, Yinglin Su, Yiting Zhang, Mengyuan Hu, Xiang Yu, Weilai Jin, Yun Li, Le Zhang

Background & aims: The interactions between human milk and the regulation of innate immune homeostasis in newborns, and their impact on intestinal health, are not fully understood. This study aimed to explore the role of peptides in human milk extracellular vesicles (EVs) in this process.

Methods: A comprehensive screening of peptides within human milk EVs was performed, leading to the identification of a beta-casein-derived peptide (CASB135-150). The effects of CASB135-150 on intestinal injury were evaluated in a rat necrotizing enterocolitis (NEC) model. Immunofluorescence analysis was used to determine its distribution, and its impact on NF-κB signaling and inflammation was studied in bone marrow-derived macrophages (BMDMs) and intestinal macrophages. Protein-protein interaction (PPI) analysis, single-cell RNA-seq (scRNA-seq), and co-immunoprecipitation (co-IP) experiments were conducted to explore the mechanism underlying CASB135-150 function.

Results: CASB135-150 significantly mitigated intestinal injury in the rat NEC model. Immunofluorescence analysis revealed that CASB135-150 could target intestinal macrophages and rapidly inhibited NF-κB signaling and reduced inflammation. ScRNA-seq analyses indicated a strong association between FHL2 and NEC development, and co-IP confirmed the interaction between CASB135-150 and FHL2. CASB135-150 disrupted the FHL2/TRAF6 complex, reducing TRAF6 protein levels. Mutation of key amino acids in CASB135-150 disrupted its interaction with FHL2 and abolished its ability to inhibit NF-κB signaling, which also prevented its protective effect in vivo. RNA-seq of intestinal tissue further highlighted the impact of CASB135-150 on the NF-κB signaling pathway.

Conclusions: Our study identifies CASB135-150, a novel peptide in human milk EVs, that rapidly regulates macrophage inflammatory responses and protects against NEC-induced intestinal injury. These findings provide new insights into the role of human milk in modulating the infant immune system and intestinal health.

背景和目的:母乳与新生儿先天性免疫平衡调节之间的相互作用及其对肠道健康的影响尚不完全清楚。本研究旨在探索人乳细胞外囊泡 (EVs) 中的多肽在这一过程中的作用:方法:对人乳细胞外囊泡中的多肽进行了全面筛选,最终确定了一种来源于β-酪蛋白的多肽(CASB135-150)。在大鼠坏死性小肠结肠炎(NEC)模型中评估了 CASB135-150 对肠道损伤的影响。免疫荧光分析确定了 CASB135-150 的分布,并研究了它对骨髓源性巨噬细胞(BMDMs)和肠道巨噬细胞中 NF-κB 信号转导和炎症的影响。为了探索CASB135-150的功能机制,研究人员进行了蛋白-蛋白相互作用(PPI)分析、单细胞RNA-seq(scRNA-seq)和共免疫沉淀(co-IP)实验:结果:CASB135-150能明显减轻大鼠NEC模型的肠道损伤。免疫荧光分析表明,CASB135-150 可靶向肠道巨噬细胞,迅速抑制 NF-κB 信号传导并减轻炎症反应。ScRNA-seq分析表明FHL2与NEC的发生密切相关,co-IP证实了CASB135-150与FHL2之间的相互作用。CASB135-150 干扰了 FHL2/TRAF6 复合物,降低了 TRAF6 蛋白水平。CASB135-150中关键氨基酸的突变破坏了它与FHL2的相互作用,取消了它抑制NF-κB信号转导的能力,这也阻止了它在体内的保护作用。肠组织的RNA-seq进一步强调了CASB135-150对NF-κB信号通路的影响:我们的研究发现了人乳EVs中的一种新型多肽CASB135-150,它能快速调节巨噬细胞的炎症反应,并对NEC诱导的肠道损伤起到保护作用。这些发现为了解母乳在调节婴儿免疫系统和肠道健康方面的作用提供了新的视角。
{"title":"The Human Milk-derived Peptide Drives Rapid Regulation of Macrophage Inflammation Responses in the Neonatal Intestine.","authors":"Fuqiang Yuan, Xu Han, Masha Huang, Yinglin Su, Yiting Zhang, Mengyuan Hu, Xiang Yu, Weilai Jin, Yun Li, Le Zhang","doi":"10.1016/j.jcmgh.2024.101420","DOIUrl":"10.1016/j.jcmgh.2024.101420","url":null,"abstract":"<p><strong>Background & aims: </strong>The interactions between human milk and the regulation of innate immune homeostasis in newborns, and their impact on intestinal health, are not fully understood. This study aimed to explore the role of peptides in human milk extracellular vesicles (EVs) in this process.</p><p><strong>Methods: </strong>A comprehensive screening of peptides within human milk EVs was performed, leading to the identification of a beta-casein-derived peptide (CASB<sub>135-150</sub>). The effects of CASB<sub>135-150</sub> on intestinal injury were evaluated in a rat necrotizing enterocolitis (NEC) model. Immunofluorescence analysis was used to determine its distribution, and its impact on NF-κB signaling and inflammation was studied in bone marrow-derived macrophages (BMDMs) and intestinal macrophages. Protein-protein interaction (PPI) analysis, single-cell RNA-seq (scRNA-seq), and co-immunoprecipitation (co-IP) experiments were conducted to explore the mechanism underlying CASB<sub>135-150</sub> function.</p><p><strong>Results: </strong>CASB<sub>135-150</sub> significantly mitigated intestinal injury in the rat NEC model. Immunofluorescence analysis revealed that CASB<sub>135-150</sub> could target intestinal macrophages and rapidly inhibited NF-κB signaling and reduced inflammation. ScRNA-seq analyses indicated a strong association between FHL2 and NEC development, and co-IP confirmed the interaction between CASB<sub>135-150</sub> and FHL2. CASB<sub>135-150</sub> disrupted the FHL2/TRAF6 complex, reducing TRAF6 protein levels. Mutation of key amino acids in CASB<sub>135-150</sub> disrupted its interaction with FHL2 and abolished its ability to inhibit NF-κB signaling, which also prevented its protective effect in vivo. RNA-seq of intestinal tissue further highlighted the impact of CASB<sub>135-150</sub> on the NF-κB signaling pathway.</p><p><strong>Conclusions: </strong>Our study identifies CASB<sub>135-150</sub>, a novel peptide in human milk EVs, that rapidly regulates macrophage inflammatory responses and protects against NEC-induced intestinal injury. These findings provide new insights into the role of human milk in modulating the infant immune system and intestinal health.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101420"},"PeriodicalIF":7.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142481784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and Molecular Gastroenterology and Hepatology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1