An interdisciplinary course on computer-aided drug discovery to broaden student participation in original scientific research

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry and Molecular Biology Education Pub Date : 2024-02-03 DOI:10.1002/bmb.21811
Christopher Stratton, Avery Christensen, Chelsey Jordan, Brian A. Salvatore, Elahe Mahdavian
{"title":"An interdisciplinary course on computer-aided drug discovery to broaden student participation in original scientific research","authors":"Christopher Stratton,&nbsp;Avery Christensen,&nbsp;Chelsey Jordan,&nbsp;Brian A. Salvatore,&nbsp;Elahe Mahdavian","doi":"10.1002/bmb.21811","DOIUrl":null,"url":null,"abstract":"<p>We present a new highly interdisciplinary project-based course in computer aided drug discovery (CADD). This course was developed in response to a call for alternative pedagogical approaches during the COVID-19 pandemic, which caused the cancellation of a face-to-face summer research program sponsored by the Louisiana Biomedical Research Network (LBRN). The course integrates guided research and educational experiences for chemistry, biology, and computer science students. We implement research-based methods with publicly available tools in bioinformatics and molecular modeling to identify and prioritize promising antiviral drug candidates for COVID-19. The purpose of this course is three-fold: I. Implement an active learning and inclusive pedagogy that fosters student engagement and research mindset; II. Develop student interdisciplinary research skills that are highly beneficial in a broader scientific context; III. Demonstrate that pedagogical shifts (initially incurred during the COVID-19 pandemic) can furnish longer-term instructional benefits. The course, which has now been successfully taught a total of five times, incorporates four modules, including lectures/discussions, live demos, inquiry-based assignments, and science communication.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 3","pages":"276-290"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmb.21811","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21811","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new highly interdisciplinary project-based course in computer aided drug discovery (CADD). This course was developed in response to a call for alternative pedagogical approaches during the COVID-19 pandemic, which caused the cancellation of a face-to-face summer research program sponsored by the Louisiana Biomedical Research Network (LBRN). The course integrates guided research and educational experiences for chemistry, biology, and computer science students. We implement research-based methods with publicly available tools in bioinformatics and molecular modeling to identify and prioritize promising antiviral drug candidates for COVID-19. The purpose of this course is three-fold: I. Implement an active learning and inclusive pedagogy that fosters student engagement and research mindset; II. Develop student interdisciplinary research skills that are highly beneficial in a broader scientific context; III. Demonstrate that pedagogical shifts (initially incurred during the COVID-19 pandemic) can furnish longer-term instructional benefits. The course, which has now been successfully taught a total of five times, incorporates four modules, including lectures/discussions, live demos, inquiry-based assignments, and science communication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于计算机辅助药物发现的跨学科课程,以扩大学生对原创科学研究的参与。
我们介绍了一门高度跨学科的计算机辅助药物发现 (CADD) 新课程。在 COVID-19 大流行期间,由路易斯安那州路易斯安那生物医学研究网络 (LBRN) 赞助的面对面暑期研究项目被取消,为了响应对替代教学方法的呼吁,我们开发了这门课程。该课程为化学、生物和计算机科学专业的学生整合了有指导的研究和教育体验。我们利用生物信息学和分子建模方面的公开工具来实施基于研究的方法,以确定有前途的抗病毒候选药物并进行优先排序。本课程的目的有三:I. 实施积极的学习教学法,促进学生的参与和研究思维的发展;II.培养学生的跨学科研究技能,这在更广泛的科学背景下非常有益;III.证明教学方法的转变(最初是在 COVID-19 大流行期间)可以带来长期的教学效益。该课程目前已成功讲授五次,包含四个模块,包括讲座/讨论、现场演示、探究式作业和科学交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
期刊最新文献
Improving the learning experience in an undergraduate course on microbial metabolism by using an illustrated story. Issue Information Cinemeducation improves early clinical exposure to inborn errors of metabolism. The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses. Encourage self-learning and collaborative learning through gamification during COVID-19 pandemic: A case study for teaching biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1