Julie M Bocetti, Valentina Alvarez, Donald E Elmore, Adam G W Matthews
Community, inclusion, and perseverance are essential for student success in STEM. To promote these values, we developed two discussion-based activities for implementation in introductory college STEM courses. Both activities incorporate watching videos that portray scientists telling the stories of their career trajectory, in-class discussions, and individual reflection. The first activity addresses community building and inclusion in the classroom, while the second activity focuses on perseverance and student definitions of success. These activities were fully implemented into sections of introductory biology during the 2020-2021 academic year. We assessed how effectively these activities addressed their learning goals through analysis of student written responses and a survey given before and after activities. Overall, the activities were successful helping students achieve learning goals related to community, inclusion and perseverance.
{"title":"Assessment of an activity that promotes community building, inclusion, and perseverance in introductory college biology courses.","authors":"Julie M Bocetti, Valentina Alvarez, Donald E Elmore, Adam G W Matthews","doi":"10.1002/bmb.21885","DOIUrl":"https://doi.org/10.1002/bmb.21885","url":null,"abstract":"<p><p>Community, inclusion, and perseverance are essential for student success in STEM. To promote these values, we developed two discussion-based activities for implementation in introductory college STEM courses. Both activities incorporate watching videos that portray scientists telling the stories of their career trajectory, in-class discussions, and individual reflection. The first activity addresses community building and inclusion in the classroom, while the second activity focuses on perseverance and student definitions of success. These activities were fully implemented into sections of introductory biology during the 2020-2021 academic year. We assessed how effectively these activities addressed their learning goals through analysis of student written responses and a survey given before and after activities. Overall, the activities were successful helping students achieve learning goals related to community, inclusion and perseverance.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura C Giojalas, Leticia García Romano, Giuliana Lingua, Rocío B Martín
Molecular Cell Biology (MCB) should be taught according to the scientific practices, avoiding cumulative and memory knowledge construction, but favoring scientific thinking. A way to achieve this goal is to apply activities involving scientific news, which construct knowledge through significant learning and the development of critical thinking. The study aimed to evaluate the implementation of learning activities involving scientific news in the MCB course at the undergraduate level. The perspective of design-based research was applied, whereas the cognitive and interpersonal aspects were evaluated by means of the professors' narration, class registration, questionnaires answered by the students, and the evaluation of the activities carried out by the students. Results showed that the activity involving scientific news reinforces the construction and integration of new knowledge with that previously acquired and consolidates the acquisition of scientific thinking. Even though the completion of the activity involved a complex process, according to the professor and students' opinion, the students observed positive aspects such as the application of biological and scientific language and the motivation to search for related information. Regarding the cooperative learning strategy, students perceived that it is a methodology that facilitates their learning. In summary, incorporating scientific news into MCB courses will enhance professors' effectiveness in achieving didactic goals while also fostering scientific thinking in students, equipping them for future roles as biologists and professors in biological sciences.
{"title":"The use of molecular and cell biology scientific news to facilitate learning and scientific thinking.","authors":"Laura C Giojalas, Leticia García Romano, Giuliana Lingua, Rocío B Martín","doi":"10.1002/bmb.21878","DOIUrl":"https://doi.org/10.1002/bmb.21878","url":null,"abstract":"<p><p>Molecular Cell Biology (MCB) should be taught according to the scientific practices, avoiding cumulative and memory knowledge construction, but favoring scientific thinking. A way to achieve this goal is to apply activities involving scientific news, which construct knowledge through significant learning and the development of critical thinking. The study aimed to evaluate the implementation of learning activities involving scientific news in the MCB course at the undergraduate level. The perspective of design-based research was applied, whereas the cognitive and interpersonal aspects were evaluated by means of the professors' narration, class registration, questionnaires answered by the students, and the evaluation of the activities carried out by the students. Results showed that the activity involving scientific news reinforces the construction and integration of new knowledge with that previously acquired and consolidates the acquisition of scientific thinking. Even though the completion of the activity involved a complex process, according to the professor and students' opinion, the students observed positive aspects such as the application of biological and scientific language and the motivation to search for related information. Regarding the cooperative learning strategy, students perceived that it is a methodology that facilitates their learning. In summary, incorporating scientific news into MCB courses will enhance professors' effectiveness in achieving didactic goals while also fostering scientific thinking in students, equipping them for future roles as biologists and professors in biological sciences.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Traditional didactic teaching methods in medical education, while foundational, often lead to passive learning and insufficient engagement. "Pancreata-The Keto Struggle," an educational tale-based game for diabetic ketoacidosis (DKA), was developed to address these challenges by promoting collaborative learning, enhancing student engagement, and improving knowledge retention through an interactive and narrative-driven approach. This study involved 150 first-year medical students divided into 25 small groups of 6 each. Participants were assessed before and after engaging with the game through a structured formative assessment, a validated questionnaire measuring engagement and learning effectiveness, and a confidence level questionnaire. In-depth small-group interviews were also conducted for qualitative feedback and thematic analysis was performed. Statistical analyses were performed using SPSS version 17. The introduction of "Pancreata-The Keto Struggle" resulted in significant improvements in students' formative assessment scores, from a mean of 19.2 ± 1.9 before the game to 39.3 ± 2.2 out of 50 after the game (p < 0.0001). Notably, students demonstrated the highest confidence gains in managing DKA and interpreting laboratory results. Qualitative analysis identified seven common themes reflecting the game's impact on learning: collaboration, retention of concepts, internal drive, self and peer assessment, joyful learning, beyond books, and aesthetic content. Over 95% of students reported increased engagement and learning effectiveness due to the game's intrinsic motivation, narrative, and group learning mechanics. "Pancreata-The Keto Struggle" effectively revitalizes collaborative learning in medical education by integrating game-based learning with traditional teaching methods. The game not only facilitates a deeper understanding of complex clinical conditions like DKA but also broadly improves students' clinical management skills and confidence. These findings underscore the potential of educational tale based games to enrich medical education and advocate for their broader application across curricula.
{"title":"\"Pancreata: The Keto Struggle\": an innovative educational tale-based game for diabetic ketoacidosis revitalizes collaborative learning, learner's engagement among undergraduate medical students.","authors":"Krishna Mohan Surapaneni","doi":"10.1002/bmb.21886","DOIUrl":"https://doi.org/10.1002/bmb.21886","url":null,"abstract":"<p><p>Traditional didactic teaching methods in medical education, while foundational, often lead to passive learning and insufficient engagement. \"Pancreata-The Keto Struggle,\" an educational tale-based game for diabetic ketoacidosis (DKA), was developed to address these challenges by promoting collaborative learning, enhancing student engagement, and improving knowledge retention through an interactive and narrative-driven approach. This study involved 150 first-year medical students divided into 25 small groups of 6 each. Participants were assessed before and after engaging with the game through a structured formative assessment, a validated questionnaire measuring engagement and learning effectiveness, and a confidence level questionnaire. In-depth small-group interviews were also conducted for qualitative feedback and thematic analysis was performed. Statistical analyses were performed using SPSS version 17. The introduction of \"Pancreata-The Keto Struggle\" resulted in significant improvements in students' formative assessment scores, from a mean of 19.2 ± 1.9 before the game to 39.3 ± 2.2 out of 50 after the game (p < 0.0001). Notably, students demonstrated the highest confidence gains in managing DKA and interpreting laboratory results. Qualitative analysis identified seven common themes reflecting the game's impact on learning: collaboration, retention of concepts, internal drive, self and peer assessment, joyful learning, beyond books, and aesthetic content. Over 95% of students reported increased engagement and learning effectiveness due to the game's intrinsic motivation, narrative, and group learning mechanics. \"Pancreata-The Keto Struggle\" effectively revitalizes collaborative learning in medical education by integrating game-based learning with traditional teaching methods. The game not only facilitates a deeper understanding of complex clinical conditions like DKA but also broadly improves students' clinical management skills and confidence. These findings underscore the potential of educational tale based games to enrich medical education and advocate for their broader application across curricula.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Zhang, Sue Ellen DeChenne-Peters, David Hecht, Michael J Wolyniak, Misty L Kuhn, Courtney M Koletar, Nicole Galport, Rebecca M Eddy, Joseph Provost, Jessica K Bell, Ellis Bell
Course-based Undergraduate Research Experiences (CUREs) have beneficial impacts on students and the capacity to provide authentic research experiences that are accessible and beneficial to all students, especially those from Minoritized Groups. CUREs can be presented in a full semester format (cCURE) and shorter modules incorporated into laboratory courses (mCURE). In this study, protein-centric CUREs were implemented at two minority-serving Community Colleges (CCs) in introductory biology and chemistry courses. Using validated assessment tools, student self-reported gains, and institutional data, we examined student outcomes in three conditions: control, mCURE, and cCURE courses. We also examined whether there was a differential impact on student outcomes by Minoritized Group status. Our findings show that students from Minoritized Groups have improved scientific literacy compared to their White/Asian peers in the cCUREs, whereas students from Minoritized Groups in the control course had lower relative scientific literacy. There was no significant difference in STEM Career Interest between the three conditions. Most significantly, the one-year retention rate of students from the mCURE condition was 24% higher than that seen among control students. Furthermore, retention of students from Minoritized Groups in mCUREs was significantly higher than in control courses, whereas no significant difference was observed in White/Asian students. Taken together, these data suggest that CUREs can be an impactful practice in introductory courses at CCs, especially for students from Minoritized Groups.
{"title":"Course-based undergraduate research experience impacts on student outcomes at minority-serving community colleges.","authors":"Jing Zhang, Sue Ellen DeChenne-Peters, David Hecht, Michael J Wolyniak, Misty L Kuhn, Courtney M Koletar, Nicole Galport, Rebecca M Eddy, Joseph Provost, Jessica K Bell, Ellis Bell","doi":"10.1002/bmb.21889","DOIUrl":"https://doi.org/10.1002/bmb.21889","url":null,"abstract":"<p><p>Course-based Undergraduate Research Experiences (CUREs) have beneficial impacts on students and the capacity to provide authentic research experiences that are accessible and beneficial to all students, especially those from Minoritized Groups. CUREs can be presented in a full semester format (cCURE) and shorter modules incorporated into laboratory courses (mCURE). In this study, protein-centric CUREs were implemented at two minority-serving Community Colleges (CCs) in introductory biology and chemistry courses. Using validated assessment tools, student self-reported gains, and institutional data, we examined student outcomes in three conditions: control, mCURE, and cCURE courses. We also examined whether there was a differential impact on student outcomes by Minoritized Group status. Our findings show that students from Minoritized Groups have improved scientific literacy compared to their White/Asian peers in the cCUREs, whereas students from Minoritized Groups in the control course had lower relative scientific literacy. There was no significant difference in STEM Career Interest between the three conditions. Most significantly, the one-year retention rate of students from the mCURE condition was 24% higher than that seen among control students. Furthermore, retention of students from Minoritized Groups in mCUREs was significantly higher than in control courses, whereas no significant difference was observed in White/Asian students. Taken together, these data suggest that CUREs can be an impactful practice in introductory courses at CCs, especially for students from Minoritized Groups.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M C Morsink, E N van Schaik, K Bossers, D A Duijker, A G C L Speksnijder
Targeted metagenomics is a rapidly expanding technology to analyze complex biological samples and genetic monitoring of environmental samples. In this research field, data analytical aspects play a crucial role. In order to teach targeted metagenomics data analysis, we developed a 4-week inquiry-driven modular course-based undergraduate research experience (mCURE) using publicly available Australian coral microbiome DNA sequencing data and associated metadata. Since an enormous amount of metadata was provided alongside the DNA sequencing data, groups of students were able to develop their own authentic research questions. Throughout the course, the student groups worked on these research questions and were supported with bioinformatics and statistics lessons. Additionally, practical aspects of data collection and analysis were addressed during hands-on field work on a nearby Dutch beach. Evaluation of the course indicated that the majority of students (1) achieved the intended metagenomics-based learning outcomes and (2) experienced scientific discovery while working on their research projects. In conclusion, the huge amount of data and metadata available in the coral microbiome data set facilitated the development of a strongly inquiry-driven course. Different groups of students were able to develop and conduct their own distinct microbiome research projects and our current mCURE format positively affected students' metagenomics data analytical skills and scientific discovery perception.
{"title":"Metagenomics education in a modular CURE format positively affects students' scientific discovery perception and data analytical skills.","authors":"M C Morsink, E N van Schaik, K Bossers, D A Duijker, A G C L Speksnijder","doi":"10.1002/bmb.21888","DOIUrl":"https://doi.org/10.1002/bmb.21888","url":null,"abstract":"<p><p>Targeted metagenomics is a rapidly expanding technology to analyze complex biological samples and genetic monitoring of environmental samples. In this research field, data analytical aspects play a crucial role. In order to teach targeted metagenomics data analysis, we developed a 4-week inquiry-driven modular course-based undergraduate research experience (mCURE) using publicly available Australian coral microbiome DNA sequencing data and associated metadata. Since an enormous amount of metadata was provided alongside the DNA sequencing data, groups of students were able to develop their own authentic research questions. Throughout the course, the student groups worked on these research questions and were supported with bioinformatics and statistics lessons. Additionally, practical aspects of data collection and analysis were addressed during hands-on field work on a nearby Dutch beach. Evaluation of the course indicated that the majority of students (1) achieved the intended metagenomics-based learning outcomes and (2) experienced scientific discovery while working on their research projects. In conclusion, the huge amount of data and metadata available in the coral microbiome data set facilitated the development of a strongly inquiry-driven course. Different groups of students were able to develop and conduct their own distinct microbiome research projects and our current mCURE format positively affected students' metagenomics data analytical skills and scientific discovery perception.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Song: You need ATP (to the tune of \"You belong with me\").","authors":"Derek T McLachlin","doi":"10.1002/bmb.21887","DOIUrl":"https://doi.org/10.1002/bmb.21887","url":null,"abstract":"","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization. Using one model protein across the entire semester allows the students to independently link topics introduced in the individual experiments; for example, students might draw connections between the thermal denaturation experiment and the requirement to keep the enzyme cold during a kinetics experiment. Students quantitated changes in secondary structure resulting from thermal denaturation by analyzing circular dichroism data. Monitoring the turbidity of a YADH solution with a temperature-controlled UV-Vis spectrometer was a reliable and easy method for undergraduate students to observe the thermally-induced aggregation of YADH. Together these experiments provide undergraduate students with first-hand experience in techniques to study protein unfolding and aggregation.
{"title":"Protein thermal stability in the undergraduate biochemistry laboratory: Exploring protein thermal stability with yeast alcohol dehydrogenase.","authors":"Alison Bates, Kathryn M Williams, Ann E Hagerman","doi":"10.1002/bmb.21880","DOIUrl":"https://doi.org/10.1002/bmb.21880","url":null,"abstract":"<p><p>We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization. Using one model protein across the entire semester allows the students to independently link topics introduced in the individual experiments; for example, students might draw connections between the thermal denaturation experiment and the requirement to keep the enzyme cold during a kinetics experiment. Students quantitated changes in secondary structure resulting from thermal denaturation by analyzing circular dichroism data. Monitoring the turbidity of a YADH solution with a temperature-controlled UV-Vis spectrometer was a reliable and easy method for undergraduate students to observe the thermally-induced aggregation of YADH. Together these experiments provide undergraduate students with first-hand experience in techniques to study protein unfolding and aggregation.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richelle L Tanner, Nicholas P Burnett, Emily E King, Anne E Todgham
Curated undergraduate research experiences have been widely used at colleges and universities for decades to build student interest, technical preparation, and confidence in the pursuit of scientific careers. Educators often employ standardized survey instruments to evaluate learning outcomes for research experiences, but many of these assessments consider only technical skill development and career interests and are not rooted in discrete pedagogical theories. As higher education aims to create inclusive and equitable learning experiences for students, we argue that pedagogical assessment tools for undergraduate research experiences need to expand to consider outcomes such as increased science literacy, confidence in relational "soft" skills, and a sense of belonging to a community that values scientific inquiry. We report on and critique a survey instrument that uses validated metrics to evaluate student sense of belonging and the relational skills developed during an undergraduate research experience. We also provide a revised survey instrument that is founded in social and emotional learning principles and expectation disconfirmation theory. We describe best practices for remodeling the undergraduate research environment to prioritize these inclusive learning objectives alongside publishable research output that is sought by research advisors. Survey tools, like the one described here, are critical for helping colleges and universities train students in science while evolving to promote inclusivity, self-efficacy, and sense of belonging. Higher education programs will continue to produce scientists, but a focus on confidence-building and soft-skill development is essential for creating a general population that is scientifically literate and supportive and trusting of the scientific process.
{"title":"Remodeling pedagogical evaluation tools to incorporate student self-efficacy and sense of belonging in scientific research.","authors":"Richelle L Tanner, Nicholas P Burnett, Emily E King, Anne E Todgham","doi":"10.1002/bmb.21881","DOIUrl":"https://doi.org/10.1002/bmb.21881","url":null,"abstract":"<p><p>Curated undergraduate research experiences have been widely used at colleges and universities for decades to build student interest, technical preparation, and confidence in the pursuit of scientific careers. Educators often employ standardized survey instruments to evaluate learning outcomes for research experiences, but many of these assessments consider only technical skill development and career interests and are not rooted in discrete pedagogical theories. As higher education aims to create inclusive and equitable learning experiences for students, we argue that pedagogical assessment tools for undergraduate research experiences need to expand to consider outcomes such as increased science literacy, confidence in relational \"soft\" skills, and a sense of belonging to a community that values scientific inquiry. We report on and critique a survey instrument that uses validated metrics to evaluate student sense of belonging and the relational skills developed during an undergraduate research experience. We also provide a revised survey instrument that is founded in social and emotional learning principles and expectation disconfirmation theory. We describe best practices for remodeling the undergraduate research environment to prioritize these inclusive learning objectives alongside publishable research output that is sought by research advisors. Survey tools, like the one described here, are critical for helping colleges and universities train students in science while evolving to promote inclusivity, self-efficacy, and sense of belonging. Higher education programs will continue to produce scientists, but a focus on confidence-building and soft-skill development is essential for creating a general population that is scientifically literate and supportive and trusting of the scientific process.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Commonly used traditional didactic lecture in biochemistry being non-interactive has several disadvantages which students find boring and difficult to retain. This study reviews the potential of role play to teach biochemistry effectively. Studies published till June 2024 on the topic role play in medical education and biochemistry were searched using 'Ovid Discovery' software showing studies available in PubMed, Embase, and Cochrane databases. Studies having matched keywords like 'role play, roleplay, role-play, education, medical, biochemistry and genetics' appearing in title or text article were included while studies that were irrelevant, in non-English language or duplicated studies were excluded. Literature search revealed 8 studies for reviewing the topic. Studies that have tested effectiveness of role play in biochemistry have shown that it can bridge the gap between theory and practice. Role play is dramatization of a theme simulating real-life scenarios evoking learner's critical thinking process, activation of cognitive, psychomotor, and affective domains. It creates lasting memory in retaining topics besides motivating student for self-directed learning. It also develops confidence, communication, and language skills among students. Role play can be a powerful tool to teach biochemistry for integrating knowledge of biochemistry with clinical concepts. The authors recommend that biochemistry lectures and practical sessions should be reinforced through role plays especially for topics having clinical relevance. The author proposes several applications of role play in biochemistry to demonstrate metabolic pathways, experimental skills, metabolic disorders, accidental emergencies in lab, do's and don'ts in labs, pre analytical errors affecting biochemistry lab results.
{"title":"Potential of role play as an educational tool in biochemistry to facilitate medical education.","authors":"Archana Nimesh","doi":"10.1002/bmb.21876","DOIUrl":"https://doi.org/10.1002/bmb.21876","url":null,"abstract":"<p><p>Commonly used traditional didactic lecture in biochemistry being non-interactive has several disadvantages which students find boring and difficult to retain. This study reviews the potential of role play to teach biochemistry effectively. Studies published till June 2024 on the topic role play in medical education and biochemistry were searched using 'Ovid Discovery' software showing studies available in PubMed, Embase, and Cochrane databases. Studies having matched keywords like 'role play, roleplay, role-play, education, medical, biochemistry and genetics' appearing in title or text article were included while studies that were irrelevant, in non-English language or duplicated studies were excluded. Literature search revealed 8 studies for reviewing the topic. Studies that have tested effectiveness of role play in biochemistry have shown that it can bridge the gap between theory and practice. Role play is dramatization of a theme simulating real-life scenarios evoking learner's critical thinking process, activation of cognitive, psychomotor, and affective domains. It creates lasting memory in retaining topics besides motivating student for self-directed learning. It also develops confidence, communication, and language skills among students. Role play can be a powerful tool to teach biochemistry for integrating knowledge of biochemistry with clinical concepts. The authors recommend that biochemistry lectures and practical sessions should be reinforced through role plays especially for topics having clinical relevance. The author proposes several applications of role play in biochemistry to demonstrate metabolic pathways, experimental skills, metabolic disorders, accidental emergencies in lab, do's and don'ts in labs, pre analytical errors affecting biochemistry lab results.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142913801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Carlos Vega-Garzón, Duverney Chaverra-Rodriguez
The COVID-19 pandemic affected a large range of in-person education activities in Colombia. This created great limitations in academic performance for students with reduced access to communication technologies and deepened the educational gaps in the country. This was particularly true for sciences such as biochemistry. In Colombia, molecular structure is a subject traditionally taught through 2D drawings and static diagrams because software and 3D artifacts are not available to all students. Thus, it is essential to develop and apply strategies to study molecular structure; especially tools that are accessible and can be easily built and used at home in rural areas of the country. Here, we propose the use of origami as a tool to teach molecular structure to second year college students in Colombia. We describe the development and the implementation of the tool adjusted to students' needs regarding their visual, tactile, and other experiential learning. We included serious game elements during the implementation to engage participation and teamwork. Students' perception about the use and utility of origami to study molecular structure was favorable, highlighting its simplicity and powerfulness to help them grasp key concepts in chemistry. This motivates us to propose this idea to explore and continue improving the strategy in the classroom.
{"title":"An idea to explore: Using origami to learn molecular structure of biomolecules.","authors":"Juan Carlos Vega-Garzón, Duverney Chaverra-Rodriguez","doi":"10.1002/bmb.21871","DOIUrl":"https://doi.org/10.1002/bmb.21871","url":null,"abstract":"<p><p>The COVID-19 pandemic affected a large range of in-person education activities in Colombia. This created great limitations in academic performance for students with reduced access to communication technologies and deepened the educational gaps in the country. This was particularly true for sciences such as biochemistry. In Colombia, molecular structure is a subject traditionally taught through 2D drawings and static diagrams because software and 3D artifacts are not available to all students. Thus, it is essential to develop and apply strategies to study molecular structure; especially tools that are accessible and can be easily built and used at home in rural areas of the country. Here, we propose the use of origami as a tool to teach molecular structure to second year college students in Colombia. We describe the development and the implementation of the tool adjusted to students' needs regarding their visual, tactile, and other experiential learning. We included serious game elements during the implementation to engage participation and teamwork. Students' perception about the use and utility of origami to study molecular structure was favorable, highlighting its simplicity and powerfulness to help them grasp key concepts in chemistry. This motivates us to propose this idea to explore and continue improving the strategy in the classroom.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}