Sensorimotor dysfunction due to developmental manganese exposure is less severe in adult female than male rats and partially improved by acute methylphenidate treatment
Stephane A. Beaudin , Samantha Gorman , Naomi Schilpp , David Woodfin , Barbara J. Strupp , Donald R. Smith
{"title":"Sensorimotor dysfunction due to developmental manganese exposure is less severe in adult female than male rats and partially improved by acute methylphenidate treatment","authors":"Stephane A. Beaudin , Samantha Gorman , Naomi Schilpp , David Woodfin , Barbara J. Strupp , Donald R. Smith","doi":"10.1016/j.ntt.2024.107330","DOIUrl":null,"url":null,"abstract":"<div><p>Epidemiological studies have reported associations between elevated manganese (Mn) exposure and poorer psychomotor performance in children. Our studies in adult male rats have established that this relationship is causal and that prolonged methylphenidate (MPH) treatment is efficacious in treating this area of dysfunction. However, it is unclear if sensitivity to these Mn deficits differs between females and males, and whether existing pharmacological therapies are efficacious in improving sensorimotor dysfunction in females. To address these questions, we used our rat model of childhood environmental Mn exposure and the Montoya staircase test to determine whether 1) there are sex differences in the lasting sensorimotor dysfunction caused by developmental Mn exposure, and 2) MPH treatment is efficacious in ameliorating the sensorimotor deficits in females. Female and male neonates were treated orally with Mn (50 mg Mn/kg/d) from postnatal day 1 to 21 and evaluated for skilled forelimb sensorimotor performance as adults. Subsequently, the efficacy of acute oral MPH treatment (doses of 0, 0.5, and 3.0 mg MPH/kg/d) was assessed in females using a within-subject MPH treatment design. Developmental postnatal Mn exposure produced lasting sensorimotor reaching and grasping deficits that were milder in females than in males. Acute MPH treatment of Mn-exposed females with the 0.5 mg/kg/d dose attenuated the reaching dysfunction without alleviating grasping dysfunction. These findings show sex-based variations in sensitivity to the sensorimotor impairment caused by developmental Mn exposure, and they are consistent with prior studies showing less vulnerability of females to Mn-induced dysfunction in other functional domains, possibly due to the protective effects of estrogen. Given our previous work showing the efficacy of MPH treatment to alleviate Mn-induced inattention, impulsiveness, and sensorimotor dysfunctions in adult male rats, they also highlight the need for further research into sex-based differences in cognitive and behavioral areas of brain function, and the efficacy of therapeutics in treating behavioral dysfunction in females.</p><p>Supported by NIEHS R01ES028369.</p></div>","PeriodicalId":19144,"journal":{"name":"Neurotoxicology and teratology","volume":"102 ","pages":"Article 107330"},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicology and teratology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892036224000126","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epidemiological studies have reported associations between elevated manganese (Mn) exposure and poorer psychomotor performance in children. Our studies in adult male rats have established that this relationship is causal and that prolonged methylphenidate (MPH) treatment is efficacious in treating this area of dysfunction. However, it is unclear if sensitivity to these Mn deficits differs between females and males, and whether existing pharmacological therapies are efficacious in improving sensorimotor dysfunction in females. To address these questions, we used our rat model of childhood environmental Mn exposure and the Montoya staircase test to determine whether 1) there are sex differences in the lasting sensorimotor dysfunction caused by developmental Mn exposure, and 2) MPH treatment is efficacious in ameliorating the sensorimotor deficits in females. Female and male neonates were treated orally with Mn (50 mg Mn/kg/d) from postnatal day 1 to 21 and evaluated for skilled forelimb sensorimotor performance as adults. Subsequently, the efficacy of acute oral MPH treatment (doses of 0, 0.5, and 3.0 mg MPH/kg/d) was assessed in females using a within-subject MPH treatment design. Developmental postnatal Mn exposure produced lasting sensorimotor reaching and grasping deficits that were milder in females than in males. Acute MPH treatment of Mn-exposed females with the 0.5 mg/kg/d dose attenuated the reaching dysfunction without alleviating grasping dysfunction. These findings show sex-based variations in sensitivity to the sensorimotor impairment caused by developmental Mn exposure, and they are consistent with prior studies showing less vulnerability of females to Mn-induced dysfunction in other functional domains, possibly due to the protective effects of estrogen. Given our previous work showing the efficacy of MPH treatment to alleviate Mn-induced inattention, impulsiveness, and sensorimotor dysfunctions in adult male rats, they also highlight the need for further research into sex-based differences in cognitive and behavioral areas of brain function, and the efficacy of therapeutics in treating behavioral dysfunction in females.
期刊介绍:
Neurotoxicology and Teratology provides a forum for publishing new information regarding the effects of chemical and physical agents on the developing, adult or aging nervous system. In this context, the fields of neurotoxicology and teratology include studies of agent-induced alterations of nervous system function, with a focus on behavioral outcomes and their underlying physiological and neurochemical mechanisms. The Journal publishes original, peer-reviewed Research Reports of experimental, clinical, and epidemiological studies that address the neurotoxicity and/or functional teratology of pesticides, solvents, heavy metals, nanomaterials, organometals, industrial compounds, mixtures, drugs of abuse, pharmaceuticals, animal and plant toxins, atmospheric reaction products, and physical agents such as radiation and noise. These reports include traditional mammalian neurotoxicology experiments, human studies, studies using non-mammalian animal models, and mechanistic studies in vivo or in vitro. Special Issues, Reviews, Commentaries, Meeting Reports, and Symposium Papers provide timely updates on areas that have reached a critical point of synthesis, on aspects of a scientific field undergoing rapid change, or on areas that present special methodological or interpretive problems. Theoretical Articles address concepts and potential mechanisms underlying actions of agents of interest in the nervous system. The Journal also publishes Brief Communications that concisely describe a new method, technique, apparatus, or experimental result.