{"title":"Tuberculosis and lung cancer: metabolic pathways play a key role.","authors":"Kianoosh Ferdosnejad, Mohammad Saber Zamani, Erfan Soroush, Abolfazl Fateh, Seyed Davar Siadat, Samira Tarashi","doi":"10.1080/15257770.2024.2308522","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the fact that some cases of tuberculosis (TB) are undiagnosed and untreated, it remains a serious global public health issue. In the diagnosis, treatment, and control of latent and active TB, there may be a lack of effectiveness. An understanding of metabolic pathways can be fundamental to treat latent TB infection and active TB disease. Rather than targeting <i>Mycobacterium tuberculosis</i>, the control strategies aim to strengthen host responses to infection and reduce chronic inflammation by effectively enhancing host resistance to infection. The pathogenesis and progression of TB are linked to several metabolites and metabolic pathways, and they are potential targets for host-directed therapies. Additionally, metabolic pathways can contribute to the progression of lung cancer in patients with latent or active TB. A comprehensive metabolic pathway analysis is conducted to highlight lung cancer development in latent and active TB. The current study aimed to emphasize the association between metabolic pathways of tumor development in patients with latent and active TB. Health control programs around the world are compromised by TB and lung cancer due to their special epidemiological and clinical characteristics. Therefore, presenting the importance of lung cancer progression through metabolic pathways occurring upon TB infection can open new doors to improving control of TB infection and active TB disease while stressing that further evaluations are required to uncover this correlation.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2308522","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the fact that some cases of tuberculosis (TB) are undiagnosed and untreated, it remains a serious global public health issue. In the diagnosis, treatment, and control of latent and active TB, there may be a lack of effectiveness. An understanding of metabolic pathways can be fundamental to treat latent TB infection and active TB disease. Rather than targeting Mycobacterium tuberculosis, the control strategies aim to strengthen host responses to infection and reduce chronic inflammation by effectively enhancing host resistance to infection. The pathogenesis and progression of TB are linked to several metabolites and metabolic pathways, and they are potential targets for host-directed therapies. Additionally, metabolic pathways can contribute to the progression of lung cancer in patients with latent or active TB. A comprehensive metabolic pathway analysis is conducted to highlight lung cancer development in latent and active TB. The current study aimed to emphasize the association between metabolic pathways of tumor development in patients with latent and active TB. Health control programs around the world are compromised by TB and lung cancer due to their special epidemiological and clinical characteristics. Therefore, presenting the importance of lung cancer progression through metabolic pathways occurring upon TB infection can open new doors to improving control of TB infection and active TB disease while stressing that further evaluations are required to uncover this correlation.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.