Geng Lu, Chuangzan Yang, Kedi Chu, Yi Zhu, Sa Huang, Juying Zheng, Huanhuan Jia, Xiaofang Li, Junfeng Ban
{"title":"Implantable celecoxib nanofibers made by electrospinning: fabrication and characterization.","authors":"Geng Lu, Chuangzan Yang, Kedi Chu, Yi Zhu, Sa Huang, Juying Zheng, Huanhuan Jia, Xiaofang Li, Junfeng Ban","doi":"10.2217/nnm-2023-0314","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Osteoarthritis causes tremendous damage to the joints, reducing the quality of life and imposing significant financial burden. An implantable drug-delivery system can improve the symptomatic manifestations with low doses and frequencies. However, the free drug has short retention in the joint cavity. <b>Materials & methods:</b> This study used electrostatic spinning technology to create an implantable drug-delivery system loaded with celecoxib (celecoxib nanofibers [Cel-NFs]) to improve retention and bioavailability. <b>Results:</b> Cel-NFs exhibited good formability, hydrophilicity and tensile properties. Cel-NFs were able to continuously release drugs for 2 weeks and increase the uptake capacity of Raw 264.7 cells, ultimately ameliorating symptoms in osteoarthritis rats. <b>Conclusion:</b> These results suggest that Cel-NFs can effectively ameliorate cartilage damage, reduce joint pain and alleviate osteoarthritis progression.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"657-669"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/nnm-2023-0314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Osteoarthritis causes tremendous damage to the joints, reducing the quality of life and imposing significant financial burden. An implantable drug-delivery system can improve the symptomatic manifestations with low doses and frequencies. However, the free drug has short retention in the joint cavity. Materials & methods: This study used electrostatic spinning technology to create an implantable drug-delivery system loaded with celecoxib (celecoxib nanofibers [Cel-NFs]) to improve retention and bioavailability. Results: Cel-NFs exhibited good formability, hydrophilicity and tensile properties. Cel-NFs were able to continuously release drugs for 2 weeks and increase the uptake capacity of Raw 264.7 cells, ultimately ameliorating symptoms in osteoarthritis rats. Conclusion: These results suggest that Cel-NFs can effectively ameliorate cartilage damage, reduce joint pain and alleviate osteoarthritis progression.