Correlation Attention Registration Based on Deep Learning from Histopathology to MRI of Prostate.

Xue Wang, Zhili Song, Jianlin Zhu, Zhixiang Li
{"title":"Correlation Attention Registration Based on Deep Learning from Histopathology to MRI of Prostate.","authors":"Xue Wang, Zhili Song, Jianlin Zhu, Zhixiang Li","doi":"10.1615/CritRevBiomedEng.2023050566","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning offers a promising methodology for the registration of prostate cancer images from histopathology to MRI. We explored how to effectively leverage key information from images to achieve improved end-to-end registration. We developed an approach based on a correlation attention registration framework to register segmentation labels of histopathology onto MRI. The network was trained using paired prostate datasets of histopathology and MRI from the Cancer Imaging Archive. We introduced An L2-Pearson correlation layer to enhance feature matching. Furthermore, our model employed an enhanced attention regression network to distinguish between key and nonkey features. For data analysis, we used the Kolmogorov-Smirnov test and a one-sample t-test, with the statistical significance level for the one-sample t-test set at 0.001. Compared with two other models (ProsRegNet and CNNGeo), our model exhibited improved performance in Dice coefficient, with increases of 9.893% and 2.753%, respectively. The Hausdorff distance was reduced by approximately 50% and 50%, while the average label error (ALE) was reduced by 0.389% and 15.021%. The proposed improved multimodal prostate registration framework demonstrated high performance in statistical analysis. The results indicate that our enhanced strategy significantly improves registration performance and enables faster registration of histopathological images of patients undergoing radical prostatectomy to preoperative MRI. More accurate registration can prevent over-diagnosing low-risk cancers and frequent false positives due to observer differences.</p>","PeriodicalId":94308,"journal":{"name":"Critical reviews in biomedical engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2023050566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning offers a promising methodology for the registration of prostate cancer images from histopathology to MRI. We explored how to effectively leverage key information from images to achieve improved end-to-end registration. We developed an approach based on a correlation attention registration framework to register segmentation labels of histopathology onto MRI. The network was trained using paired prostate datasets of histopathology and MRI from the Cancer Imaging Archive. We introduced An L2-Pearson correlation layer to enhance feature matching. Furthermore, our model employed an enhanced attention regression network to distinguish between key and nonkey features. For data analysis, we used the Kolmogorov-Smirnov test and a one-sample t-test, with the statistical significance level for the one-sample t-test set at 0.001. Compared with two other models (ProsRegNet and CNNGeo), our model exhibited improved performance in Dice coefficient, with increases of 9.893% and 2.753%, respectively. The Hausdorff distance was reduced by approximately 50% and 50%, while the average label error (ALE) was reduced by 0.389% and 15.021%. The proposed improved multimodal prostate registration framework demonstrated high performance in statistical analysis. The results indicate that our enhanced strategy significantly improves registration performance and enables faster registration of histopathological images of patients undergoing radical prostatectomy to preoperative MRI. More accurate registration can prevent over-diagnosing low-risk cancers and frequent false positives due to observer differences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的组织病理学与前列腺 MRI 的相关性注意登记。
深度学习为前列腺癌图像从组织病理学到核磁共振成像的配准提供了一种前景广阔的方法。我们探索了如何有效利用图像中的关键信息来实现更好的端到端配准。我们开发了一种基于相关注意配准框架的方法,将组织病理学的分割标签配准到核磁共振成像上。我们使用癌症成像档案中组织病理学和核磁共振成像的配对前列腺数据集对网络进行了训练。我们引入了 L2-Pearson 关联层来增强特征匹配。此外,我们的模型还采用了增强型注意力回归网络来区分关键特征和非关键特征。在数据分析中,我们使用了 Kolmogorov-Smirnov 检验和单样本 t 检验,单样本 t 检验的统计显著性水平设定为 0.001。与其他两个模型(ProsRegNet 和 CNNGeo)相比,我们的模型在骰子系数方面表现更好,分别提高了 9.893% 和 2.753%。豪斯多夫距离(Hausdorff distance)分别降低了约 50%和 50%,平均标签误差(ALE)分别降低了 0.389% 和 15.021%。所提出的改进型多模态前列腺配准框架在统计分析中表现出很高的性能。结果表明,我们的增强型策略显著提高了配准性能,使接受根治性前列腺切除术的患者的组织病理学图像与术前磁共振成像的配准速度更快。更精确的配准可避免过度诊断低风险癌症和因观察者差异而导致的频繁假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Retinal Blood Vessel Enhancement and Segmentation Techniques for Color Fundus Photography. Correlation Attention Registration Based on Deep Learning from Histopathology to MRI of Prostate. A Critical Review on Detection of Foodborne Pathogens Using Electrochemical Biosensors. Cilia and Nodal Flow in Asymmetry: An Engineering Perspective. Efficient Electrochemiluminescence Sensing in Microfluidic Biosensors: A Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1