George William Atwoki Nyakairu , Pachris Muamba Kapanga , Muhammad Ntale , Séraphin Ntumba Lusamba , Raphael Muamba Tshimanga , Abdelhadi Ammari , Zaccheus Shehu
{"title":"Synthesis, characterization and application of Zeolite/Bi2O3 nanocomposite in removal of Rhodamine B dye from wastewater","authors":"George William Atwoki Nyakairu , Pachris Muamba Kapanga , Muhammad Ntale , Séraphin Ntumba Lusamba , Raphael Muamba Tshimanga , Abdelhadi Ammari , Zaccheus Shehu","doi":"10.1016/j.clwat.2024.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Many factories use a variety of colours to enhance product aesthetics, leading to untreated wastewater being discharged into natural water bodies. This wastewater not only poses a threat to aquatic life but also endangers human health, causing issues like skin diseases, as some dyes are carcinogenic. Rhodamine B dye (RhB) is commonly used in industries such as textiles, paper, etc. This study focuses on synthesizing, characterizing, and applying Zeolite/Bi<sub>2</sub>O<sub>3</sub> nanocomposites to efficiently remove RhB dye. Nanocomposites were synthesized using the sol-gel method and characterized using techniques including FTIR, SEM-EDS, XRD, DLS, point of zero charge determination, and surface resonance analysis. The removal process in an aqueous solution achieved its maximum efficiency of 100% under the following optimal conditions: initial concentration of RhB dye (0.5 mg/L), time (10 min), adsorbent dose (0.55 g), pH (4), and temperature (298 K). Real wastewater testing confirmed the nanocomposite's efficiency, removing a significant 98.12% of RhB dye. Reusability tests showed stability, with removal efficiencies of 100%, 97.08%, and 88.9% over three cycles. Isotherm analysis adhered to the Freundlich Isotherm Model (R<sup>2</sup> = 0.9953), signifying favourable adsorption behaviour. Kinetic analysis supported the pseudo-second-order model, indicating a chemisorption mechanism. Thermodynamic analysis suggested spontaneous (negative ΔG°) and endothermic (positive ΔH°) adsorption, with reduced randomness (negative ΔS°) at the solid-liquid interface. In conclusion, wastewater dye removal, especially Rhodamine B, is vital for environmental and public health protection. The Zeolite/Bi<sub>2</sub>O<sub>3</sub> nanocomposite emerges as an efficient, sustainable, and eco-friendly adsorbent for Rhodamine B dye removal in both synthetic solutions and real wastewater.</p></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950263224000024/pdfft?md5=cd5349dc367c6d271ab04199b6421172&pid=1-s2.0-S2950263224000024-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many factories use a variety of colours to enhance product aesthetics, leading to untreated wastewater being discharged into natural water bodies. This wastewater not only poses a threat to aquatic life but also endangers human health, causing issues like skin diseases, as some dyes are carcinogenic. Rhodamine B dye (RhB) is commonly used in industries such as textiles, paper, etc. This study focuses on synthesizing, characterizing, and applying Zeolite/Bi2O3 nanocomposites to efficiently remove RhB dye. Nanocomposites were synthesized using the sol-gel method and characterized using techniques including FTIR, SEM-EDS, XRD, DLS, point of zero charge determination, and surface resonance analysis. The removal process in an aqueous solution achieved its maximum efficiency of 100% under the following optimal conditions: initial concentration of RhB dye (0.5 mg/L), time (10 min), adsorbent dose (0.55 g), pH (4), and temperature (298 K). Real wastewater testing confirmed the nanocomposite's efficiency, removing a significant 98.12% of RhB dye. Reusability tests showed stability, with removal efficiencies of 100%, 97.08%, and 88.9% over three cycles. Isotherm analysis adhered to the Freundlich Isotherm Model (R2 = 0.9953), signifying favourable adsorption behaviour. Kinetic analysis supported the pseudo-second-order model, indicating a chemisorption mechanism. Thermodynamic analysis suggested spontaneous (negative ΔG°) and endothermic (positive ΔH°) adsorption, with reduced randomness (negative ΔS°) at the solid-liquid interface. In conclusion, wastewater dye removal, especially Rhodamine B, is vital for environmental and public health protection. The Zeolite/Bi2O3 nanocomposite emerges as an efficient, sustainable, and eco-friendly adsorbent for Rhodamine B dye removal in both synthetic solutions and real wastewater.