Zhiqiang Zhang;Runqi Gu;Yifei Jiang;Yan Cui;Chunhua Cai
{"title":"A Near-Zero Thermoelectric RF Power Sensor for High Dynamic Range Applications","authors":"Zhiqiang Zhang;Runqi Gu;Yifei Jiang;Yan Cui;Chunhua Cai","doi":"10.1109/JMEMS.2023.3330574","DOIUrl":null,"url":null,"abstract":"A novel broadband and thermoelectric RF power sensor with the near-zero power consumption is proposed for high dynamic range detection applications. This sensor is based on the RF power-heat-electricity operating principle and is fabricated using microelectromechanical systems (MEMS) and GaAs monolithic microwave integrated circuit (MMIC) processes. During operation, the device consumes no DC power and shows less than −24.2 dB reflection loss up to 25 GHz, due to the fully passive and simple impedance structure. The dynamic range of 42 dB is obtained without sacrificing linearity, due to the robust load and parallel thermocouple design. Experiments also show that the thermoelectric sensor itself can detect 500 mW of RF power. [2023-0134]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"9-11"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10320128/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel broadband and thermoelectric RF power sensor with the near-zero power consumption is proposed for high dynamic range detection applications. This sensor is based on the RF power-heat-electricity operating principle and is fabricated using microelectromechanical systems (MEMS) and GaAs monolithic microwave integrated circuit (MMIC) processes. During operation, the device consumes no DC power and shows less than −24.2 dB reflection loss up to 25 GHz, due to the fully passive and simple impedance structure. The dynamic range of 42 dB is obtained without sacrificing linearity, due to the robust load and parallel thermocouple design. Experiments also show that the thermoelectric sensor itself can detect 500 mW of RF power. [2023-0134]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.