Pub Date : 2024-12-31DOI: 10.1109/JMEMS.2024.3522404
{"title":"2024 Index Journal of Microelectromechanical Systems Vol. 33","authors":"","doi":"10.1109/JMEMS.2024.3522404","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3522404","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"807-828"},"PeriodicalIF":2.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818783","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1109/JMEMS.2024.3496135
{"title":"Journal of Microelectromechanical Systems Publication Information","authors":"","doi":"10.1109/JMEMS.2024.3496135","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3496135","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10773390","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1109/JMEMS.2024.3496173
{"title":"TechRxiv: Share Your Preprint Research With the World!","authors":"","doi":"10.1109/JMEMS.2024.3496173","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3496173","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"806-806"},"PeriodicalIF":2.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10773388","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Whisker sensors, typically fabricated by casting soft polymers, have a measurement range determined by the mechanical properties of the soft polymer used, specifically, its Young’s modulus. Traditional whisker sensors have fixed stiffness after fabrication, which limits their measurement range. However, this study introduced a sensor that integrates a jamming actuator with a whisker sensor, allowing for adjustable stiffness. This adjustment not only enables high sensitivity within a specific measurement range but also expands the measurable range. Moreover, to enhance the jamming effect, tetrapod-shaped particles, which exhibit the highest friction, were fabricated using 3D printing, significantly improving the measurement range. Additionally, four channels were strategically placed at the shell edges, within which materials with Young’s moduli higher than that of polydimethylsiloxane (PDMS) could be filled, allowing for an adjustable overall stiffness. When no vacuum pressure was applied, the whisker sensor filled with tetrapod particles was able to measure forces with a sensitivity of approximately 93 mm/N in the range of 0–70 mN. When a vacuum pressure of –50 kPa was applied, the sensor could measure forces with a sensitivity of around 82 mm/N in the range of 70–140 mN. Under a vacuum pressure of –100 kPa, the sensor could measure forces with a sensitivity of approximately 65 mm/N in the range of 140–220 mN. This innovation enables the selective expansion of the sensitivity and measurement range, which were previously difficult to achieve, showcasing new possibilities for jamming actuators and their potential use in exploration environments requiring a wide measurement range.[2024-0099]
{"title":"Whisker Sensor With Extended Measurement Range Through Jamming Effects Using 3D-Printed Tetrapod Particles","authors":"Woojun Jung;Seonghyeon Lee;Deyi Zheng;Muhammad Hilal;Yongha Hwang","doi":"10.1109/JMEMS.2024.3474010","DOIUrl":"https://doi.org/10.1109/JMEMS.2024.3474010","url":null,"abstract":"Whisker sensors, typically fabricated by casting soft polymers, have a measurement range determined by the mechanical properties of the soft polymer used, specifically, its Young’s modulus. Traditional whisker sensors have fixed stiffness after fabrication, which limits their measurement range. However, this study introduced a sensor that integrates a jamming actuator with a whisker sensor, allowing for adjustable stiffness. This adjustment not only enables high sensitivity within a specific measurement range but also expands the measurable range. Moreover, to enhance the jamming effect, tetrapod-shaped particles, which exhibit the highest friction, were fabricated using 3D printing, significantly improving the measurement range. Additionally, four channels were strategically placed at the shell edges, within which materials with Young’s moduli higher than that of polydimethylsiloxane (PDMS) could be filled, allowing for an adjustable overall stiffness. When no vacuum pressure was applied, the whisker sensor filled with tetrapod particles was able to measure forces with a sensitivity of approximately 93 mm/N in the range of 0–70 mN. When a vacuum pressure of –50 kPa was applied, the sensor could measure forces with a sensitivity of around 82 mm/N in the range of 70–140 mN. Under a vacuum pressure of –100 kPa, the sensor could measure forces with a sensitivity of approximately 65 mm/N in the range of 140–220 mN. This innovation enables the selective expansion of the sensitivity and measurement range, which were previously difficult to achieve, showcasing new possibilities for jamming actuators and their potential use in exploration environments requiring a wide measurement range.[2024-0099]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"758-766"},"PeriodicalIF":2.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this letter, a high-performance micro-shell resonator gyroscope (MSRG) working on rate-integrating mode with virtual rotation modulation (VRM) is presented for the first time. To suppress the angle-dependent bias and improve the long-term accuracy of MSRG, its vibrating pattern is virtually set to rotate forward and backward periodically, which is called virtual rotation modulation. Combined with the self-calibration for the virtual rotating rate and the aniso-damping, the RMS error of the device output under VRM is reduced. The experimental results show the MSRG with VRM can achieve a long-term bias instability (BI) of $0.017~^{circ }$