Mohammad Kazemi;Seyedfakhreddin Nabavi;Mathieu Gratuze;Frederic Nabki
{"title":"Frequency Selection in a MEMS Flexural Beam Resonator by Electrostatic Actuation","authors":"Mohammad Kazemi;Seyedfakhreddin Nabavi;Mathieu Gratuze;Frederic Nabki","doi":"10.1109/JMEMS.2023.3331701","DOIUrl":null,"url":null,"abstract":"The utilization of MEMS resonators in microelectronics has garnered significant attention, given their crucial role in a multitude of applications, including timing and sensing. Among the various types of resonators, tunable resonators are particularly noteworthy, as they possess the capability of dynamically adjusting their resonant frequency. Accordingly, this work presents an innovative method for tuning the resonant frequency of beam resonators that are resonating out-of-plane by using a pair of electrostatic actuators. The proposed mechanism focuses on increasing the stiffness of the anchoring structure, which ultimately results in a significant increase in the resonant frequency of the beam resonator. This approach relies on the use of electrostatic actuators which are positioned in close proximity to the anchors and are pulled into the device from a distance of \n<inline-formula> <tex-math>$\\mathrm {2 ~\\mu \\text {m} }$ </tex-math></inline-formula>\n. The method is investigated using finite element simulation and measurement results from fabricated devices. The results indicate significant frequency tuning that reaches 27% and 51% of the initial resonant frequency by activation of one and both electrostatic actuators, respectively. [2023-0095]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"66-77"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10319990","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10319990/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of MEMS resonators in microelectronics has garnered significant attention, given their crucial role in a multitude of applications, including timing and sensing. Among the various types of resonators, tunable resonators are particularly noteworthy, as they possess the capability of dynamically adjusting their resonant frequency. Accordingly, this work presents an innovative method for tuning the resonant frequency of beam resonators that are resonating out-of-plane by using a pair of electrostatic actuators. The proposed mechanism focuses on increasing the stiffness of the anchoring structure, which ultimately results in a significant increase in the resonant frequency of the beam resonator. This approach relies on the use of electrostatic actuators which are positioned in close proximity to the anchors and are pulled into the device from a distance of
$\mathrm {2 ~\mu \text {m} }$
. The method is investigated using finite element simulation and measurement results from fabricated devices. The results indicate significant frequency tuning that reaches 27% and 51% of the initial resonant frequency by activation of one and both electrostatic actuators, respectively. [2023-0095]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.