Yu. Yu. Illarionov, A. Karl, Q. Smets, B. Kaczer, T. Knobloch, L. Panarella, T. Schram, S. Brems, D. Cott, I. Asselberghs, T. Grasser
{"title":"Process implications on the stability and reliability of 300 mm FAB MoS2 field-effect transistors","authors":"Yu. Yu. Illarionov, A. Karl, Q. Smets, B. Kaczer, T. Knobloch, L. Panarella, T. Schram, S. Brems, D. Cott, I. Asselberghs, T. Grasser","doi":"10.1038/s41699-024-00445-0","DOIUrl":null,"url":null,"abstract":"Recent advances in fabricating field-effect transistors with MoS2 and other related two-dimensional (2D) semiconductors have inspired the industry to begin with the integration of these emerging technologies into FAB-compatible process flows. Just like in the lab research on 2D devices performed in the last decade, focus during development is typically put on pure technology-related issues, such as low-temperature growth methods of large-area 2D films on target substrates, damage-free transfer from sacrificial substrates and growth of top-gate oxides. With maturing technology, the problem of stability limitations caused by oxide traps is gradually coming into focus now. Thus, here we report an in-depth analysis of hysteresis and bias-temperature instabilities for MoS2 FETs fabricated using a 300 mm FAB-compatible process. By performing a comprehensive statistical analysis on devices with top gate lengths ranging between 18 nm and 10 μm, we demonstrate that aggressive scaling results in additional stability problems, likely caused by defective edges of the scaled top gates, in particular at higher operation temperatures. These are important insights for understanding and addressing the stability limitations in future nanoscale 2D FETs produced using FAB process lines.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00445-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00445-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in fabricating field-effect transistors with MoS2 and other related two-dimensional (2D) semiconductors have inspired the industry to begin with the integration of these emerging technologies into FAB-compatible process flows. Just like in the lab research on 2D devices performed in the last decade, focus during development is typically put on pure technology-related issues, such as low-temperature growth methods of large-area 2D films on target substrates, damage-free transfer from sacrificial substrates and growth of top-gate oxides. With maturing technology, the problem of stability limitations caused by oxide traps is gradually coming into focus now. Thus, here we report an in-depth analysis of hysteresis and bias-temperature instabilities for MoS2 FETs fabricated using a 300 mm FAB-compatible process. By performing a comprehensive statistical analysis on devices with top gate lengths ranging between 18 nm and 10 μm, we demonstrate that aggressive scaling results in additional stability problems, likely caused by defective edges of the scaled top gates, in particular at higher operation temperatures. These are important insights for understanding and addressing the stability limitations in future nanoscale 2D FETs produced using FAB process lines.
利用 MoS2 和其他相关二维(2D)半导体制造场效应晶体管方面的最新进展,促使业界开始将这些新兴技术集成到 FAB 兼容工艺流程中。与过去十年间进行的二维器件实验室研究一样,开发过程中的重点通常放在纯技术相关的问题上,如目标基底上大面积二维薄膜的低温生长方法、牺牲基底的无损转移以及顶栅氧化物的生长。随着技术的不断成熟,氧化物陷阱导致的稳定性限制问题也逐渐成为焦点。因此,我们在此报告了对使用 300 毫米 FAB 兼容工艺制造的 MoS2 FET 的磁滞和偏置-温度不稳定性的深入分析。通过对顶栅长度介于 18 nm 和 10 μm 之间的器件进行全面的统计分析,我们证明了激进的缩放会导致额外的稳定性问题,这可能是由缩放顶栅的缺陷边缘引起的,尤其是在较高的工作温度下。这些见解对于理解和解决未来使用 FAB 工艺线生产的纳米级二维场效应晶体管的稳定性限制问题非常重要。
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.