Binzhi Zhao, Hui Tan, Jie Yang, Xiaohui Zhang, Zidi Yu, Hanli Sun, Jialiang Wei, Xinyi Zhao, Yufeng Zhang, Lili Chen, Dali Yang, Jin Deng, Yao Fu, Zheng Huang, Ning Jiao
{"title":"Catalytic conversion of mixed polyolefins under mild atmospheric pressure","authors":"Binzhi Zhao, Hui Tan, Jie Yang, Xiaohui Zhang, Zidi Yu, Hanli Sun, Jialiang Wei, Xinyi Zhao, Yufeng Zhang, Lili Chen, Dali Yang, Jin Deng, Yao Fu, Zheng Huang, Ning Jiao","doi":"10.1016/j.xinn.2024.100586","DOIUrl":null,"url":null,"abstract":"<p>The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. Firstly, it operates under atmospheric pressure and mild conditions, using O<sub>2</sub> or air as the oxidant. Secondly, it is compatible with HDPE (high-density polyethylene), LDPE (low-density polyethylene), PS, PP, and their blends; Thirdly, it utilizes an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"48 1","pages":""},"PeriodicalIF":33.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100586","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. Firstly, it operates under atmospheric pressure and mild conditions, using O2 or air as the oxidant. Secondly, it is compatible with HDPE (high-density polyethylene), LDPE (low-density polyethylene), PS, PP, and their blends; Thirdly, it utilizes an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.
期刊介绍:
The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals.
The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide.
Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.