Chenchen Zhao , Dongbo Wang , Wen He , Bingke Zhang , Jingwen Pan , Zhi Zeng , Xiangyu Zhang , Donghao Liu , Sihang Liu , Gang Liu , Xuan Fang , Dan Fang , Liancheng Zhao , Jinzhong Wang
{"title":"Self-powered broadband RGB imaging photodetector based on air-stabilized Bi2Te3 nanosheets","authors":"Chenchen Zhao , Dongbo Wang , Wen He , Bingke Zhang , Jingwen Pan , Zhi Zeng , Xiangyu Zhang , Donghao Liu , Sihang Liu , Gang Liu , Xuan Fang , Dan Fang , Liancheng Zhao , Jinzhong Wang","doi":"10.1016/j.mtnano.2024.100455","DOIUrl":null,"url":null,"abstract":"<div><p>Room temperature self-powered broadband (RTSPBD) response photodetectors have received considerable attention and are also very helpful in alleviating today's energy and environmental crisis. Herein, bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) nanosheets were successfully synthesized and assembled into an RTSPBD photodetector. The Bi<sub>2</sub>Te<sub>3</sub> photodetector exhibits excellent response characteristics: wide spectral range, maximum responsivity (10.254 mA/W, 435 nm), photocurrent density (106 μA/cm<sup>2</sup>), <em>I</em><sub><em>on</em></sub><em>/I</em><sub><em>off</em></sub> (71, 365 nm, 25 mW/cm<sup>2</sup>), rise/decay time (<em>τ</em><sub><em>rise</em></sub> = 0.0475 s and <em>τ</em><sub><em>decay</em></sub> = 0.0468 s) and cycling stability. A superior responsivity from the ultraviolet to infrared (UV-IR) region is observed, which is attributed to the fact that the narrow bandgap topological insulating state of Bi<sub>2</sub>Te<sub>3</sub> provides a fast charge transport channel for electrons generated by the photovoltaic effect. In addition, it was found that these devices have potential applications in red-green-blue (RGB) triple primary color imaging. It is anticipated that this work will provide a great promising candidate material for the design and preparation of high-performance RTSPBD photodetection imaging devices in the future.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100455"},"PeriodicalIF":8.2000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000051","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Room temperature self-powered broadband (RTSPBD) response photodetectors have received considerable attention and are also very helpful in alleviating today's energy and environmental crisis. Herein, bismuth telluride (Bi2Te3) nanosheets were successfully synthesized and assembled into an RTSPBD photodetector. The Bi2Te3 photodetector exhibits excellent response characteristics: wide spectral range, maximum responsivity (10.254 mA/W, 435 nm), photocurrent density (106 μA/cm2), Ion/Ioff (71, 365 nm, 25 mW/cm2), rise/decay time (τrise = 0.0475 s and τdecay = 0.0468 s) and cycling stability. A superior responsivity from the ultraviolet to infrared (UV-IR) region is observed, which is attributed to the fact that the narrow bandgap topological insulating state of Bi2Te3 provides a fast charge transport channel for electrons generated by the photovoltaic effect. In addition, it was found that these devices have potential applications in red-green-blue (RGB) triple primary color imaging. It is anticipated that this work will provide a great promising candidate material for the design and preparation of high-performance RTSPBD photodetection imaging devices in the future.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites