EMPNet: An extract-map-predict neural network architecture for cross-domain recommendation

Jinpeng Chen, Fan Zhang, Huan Li, Hua Lu, Xiongnan Jin, Kuien Liu, Hongjun Li, Yongheng Wang
{"title":"EMPNet: An extract-map-predict neural network architecture for cross-domain recommendation","authors":"Jinpeng Chen, Fan Zhang, Huan Li, Hua Lu, Xiongnan Jin, Kuien Liu, Hongjun Li, Yongheng Wang","doi":"10.1007/s11280-024-01240-z","DOIUrl":null,"url":null,"abstract":"<p>Cross-domain recommendation leverages a user’s historical interactions in the auxiliary domain to suggest items within the target domain, particularly for cold-start users with no prior activity in the target domain. Existing cross-domain recommendation models often overlook key aspects such as the complexities of transferring user interests between domains and the biases inherent in user behavior patterns. In contrast, our Extract-Map-Predict Neural Network Architecture (EMPNet) employs a disentanglement approach to map fine-grained user interests and utilize the biases inherent in the cross-domain recommendation. In feature extraction, we use the Bidirectional Encoder Representations from Transformers (BERT) and Identity-Enhanced Multi-Head Attention Mechanism to obtain the user and item feature vectors. In cross-domain user mapping, we disentangle the user feature vector into domain-shared and domain-specific interests for fine-grained cross-domain mapping to obtain the feature vector of cold-start users in the target domain. In rating prediction, we design a biased Attentional Factorization Machine (AFM) to utilize biases extracted from user and item features. We experimentally evaluate EMPNet on the Amazon dataset. The results show that it clearly outperforms the selected baselines.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01240-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-domain recommendation leverages a user’s historical interactions in the auxiliary domain to suggest items within the target domain, particularly for cold-start users with no prior activity in the target domain. Existing cross-domain recommendation models often overlook key aspects such as the complexities of transferring user interests between domains and the biases inherent in user behavior patterns. In contrast, our Extract-Map-Predict Neural Network Architecture (EMPNet) employs a disentanglement approach to map fine-grained user interests and utilize the biases inherent in the cross-domain recommendation. In feature extraction, we use the Bidirectional Encoder Representations from Transformers (BERT) and Identity-Enhanced Multi-Head Attention Mechanism to obtain the user and item feature vectors. In cross-domain user mapping, we disentangle the user feature vector into domain-shared and domain-specific interests for fine-grained cross-domain mapping to obtain the feature vector of cold-start users in the target domain. In rating prediction, we design a biased Attentional Factorization Machine (AFM) to utilize biases extracted from user and item features. We experimentally evaluate EMPNet on the Amazon dataset. The results show that it clearly outperforms the selected baselines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMPNet:用于跨域推荐的提取-映射-预测神经网络架构
跨域推荐利用用户在辅助域中的历史互动来推荐目标域中的项目,特别是对于在目标域中没有任何活动的冷启动用户。现有的跨领域推荐模型往往忽略了一些关键问题,如用户兴趣在领域间转移的复杂性和用户行为模式中固有的偏差。与此相反,我们的提取-映射-预测神经网络架构(EMPNet)采用了一种分离方法来映射细粒度的用户兴趣,并利用跨领域推荐中固有的偏差。在特征提取方面,我们使用变压器双向编码器表示法(BERT)和身份增强多头注意力机制来获取用户和项目特征向量。在跨域用户映射中,我们将用户特征向量分为域共享兴趣和域特定兴趣,进行细粒度的跨域映射,从而获得目标域中冷启动用户的特征向量。在评级预测中,我们设计了一种有偏差的注意力因式分解机(AFM),以利用从用户和项目特征中提取的偏差。我们在亚马逊数据集上对 EMPNet 进行了实验评估。结果表明,它明显优于所选的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networks A SHAP-based controversy analysis through communities on Twitter pFind: Privacy-preserving lost object finding in vehicular crowdsensing Use of prompt-based learning for code-mixed and code-switched text classification Drug traceability system based on semantic blockchain and on a reputation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1