Weicheng Sun, Ping Zhang, Weihan Zhang, Jinsheng Xu, Yanrong Huang, Li Li
{"title":"Synchronous Mutual Learning Network and Asynchronous Multi-Scale Embedding Network for miRNA-Disease Association Prediction","authors":"Weicheng Sun, Ping Zhang, Weihan Zhang, Jinsheng Xu, Yanrong Huang, Li Li","doi":"10.1007/s12539-023-00602-x","DOIUrl":null,"url":null,"abstract":"<p>MicroRNA (miRNA) serves as a pivotal regulator of numerous cellular processes, and the identification of miRNA-disease associations (MDAs) is crucial for comprehending complex diseases. Recently, graph neural networks (GNN) have made significant advancements in MDA prediction. However, these methods tend to learn one type of node representation from a single heterogeneous network, ignoring the importance of multiple network topologies and node attributes. Here, we propose SMDAP (Sequence hierarchical modeling-based Mirna-Disease Association Prediction framework), a novel GNN-based framework that incorporates multiple network topologies and various node attributes including miRNA seed and full-length sequences to predict potential MDAs. Specifically, SMDAP consists of two types of MDA representation: following a heterogeneous pattern, we construct a transfer learning-like synchronous mutual learning network to learn the first MDA representation in conjunction with the miRNA seed sequence. Meanwhile, following a homogeneous pattern, we design a subgraph-inspired asynchronous multi-scale embedding network to obtain the second MDA representation based on the miRNA full-length sequence. Subsequently, an adaptive fusion approach is designed to combine the two branches such that we can score the MDAs by the downstream classifier and infer novel MDAs. Comprehensive experiments demonstrate that SMDAP integrates the advantages of multiple network topologies and node attributes into two branch representations. Moreover, the area under the receiver operating characteristic curve is 0.9622 on DB1, which is a 5.06% increase from the baselines. The area under the precision–recall curve is 0.9777, which is a 7.33% increase from the baselines. In addition, case studies on three human cancers validated the predictive performance of SMDAP. Overall, SMDAP represents a powerful tool for MDA prediction.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":"39 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00602-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNA (miRNA) serves as a pivotal regulator of numerous cellular processes, and the identification of miRNA-disease associations (MDAs) is crucial for comprehending complex diseases. Recently, graph neural networks (GNN) have made significant advancements in MDA prediction. However, these methods tend to learn one type of node representation from a single heterogeneous network, ignoring the importance of multiple network topologies and node attributes. Here, we propose SMDAP (Sequence hierarchical modeling-based Mirna-Disease Association Prediction framework), a novel GNN-based framework that incorporates multiple network topologies and various node attributes including miRNA seed and full-length sequences to predict potential MDAs. Specifically, SMDAP consists of two types of MDA representation: following a heterogeneous pattern, we construct a transfer learning-like synchronous mutual learning network to learn the first MDA representation in conjunction with the miRNA seed sequence. Meanwhile, following a homogeneous pattern, we design a subgraph-inspired asynchronous multi-scale embedding network to obtain the second MDA representation based on the miRNA full-length sequence. Subsequently, an adaptive fusion approach is designed to combine the two branches such that we can score the MDAs by the downstream classifier and infer novel MDAs. Comprehensive experiments demonstrate that SMDAP integrates the advantages of multiple network topologies and node attributes into two branch representations. Moreover, the area under the receiver operating characteristic curve is 0.9622 on DB1, which is a 5.06% increase from the baselines. The area under the precision–recall curve is 0.9777, which is a 7.33% increase from the baselines. In addition, case studies on three human cancers validated the predictive performance of SMDAP. Overall, SMDAP represents a powerful tool for MDA prediction.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.