首页 > 最新文献

Interdisciplinary Sciences: Computational Life Sciences最新文献

英文 中文
Self-Supervised Graph Representation Learning for Single-Cell Classification.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-04-03 DOI: 10.1007/s12539-025-00700-y
Qiguo Dai, Wuhao Liu, Xianhai Yu, Xiaodong Duan, Ziqiang Liu

Accurately identifying cell types in single-cell RNA sequencing data is critical for understanding cellular differentiation and pathological mechanisms in downstream analysis. As traditional biological approaches are laborious and time-intensive, it is imperative to develop computational biology methods for cell classification. However, it remains a challenge for existing methods to adequately utilize the potential gene expression information within the vast amount of unlabeled cell data, which limits their classification and generalization performance. Therefore, we propose a novel self-supervised graph representation learning framework for single-cell classification, named scSSGC. Specifically, in the pre-training stage of self-supervised learning, multiple K-means clustering tasks conducted on unlabeled cell data are jointly employed for model training, thereby mitigating the issue of limited labeled data. To effectively capture the potential interactions among cells, we introduce a locally augmented graph neural network to enhance the information aggregation capability for nodes with fewer neighbors in the cell graph. A range of benchmark experiments demonstrates that scSSGC outperforms existing state-of-the-art cell classification methods. More importantly, scSSGC provides stable performance when faced with cross-datasets, indicating better generalization ability.

{"title":"Self-Supervised Graph Representation Learning for Single-Cell Classification.","authors":"Qiguo Dai, Wuhao Liu, Xianhai Yu, Xiaodong Duan, Ziqiang Liu","doi":"10.1007/s12539-025-00700-y","DOIUrl":"https://doi.org/10.1007/s12539-025-00700-y","url":null,"abstract":"<p><p>Accurately identifying cell types in single-cell RNA sequencing data is critical for understanding cellular differentiation and pathological mechanisms in downstream analysis. As traditional biological approaches are laborious and time-intensive, it is imperative to develop computational biology methods for cell classification. However, it remains a challenge for existing methods to adequately utilize the potential gene expression information within the vast amount of unlabeled cell data, which limits their classification and generalization performance. Therefore, we propose a novel self-supervised graph representation learning framework for single-cell classification, named scSSGC. Specifically, in the pre-training stage of self-supervised learning, multiple K-means clustering tasks conducted on unlabeled cell data are jointly employed for model training, thereby mitigating the issue of limited labeled data. To effectively capture the potential interactions among cells, we introduce a locally augmented graph neural network to enhance the information aggregation capability for nodes with fewer neighbors in the cell graph. A range of benchmark experiments demonstrates that scSSGC outperforms existing state-of-the-art cell classification methods. More importantly, scSSGC provides stable performance when faced with cross-datasets, indicating better generalization ability.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing Compound Substructures Combined with Molecular Fingerprinting to Predict Drug-Target Interactions.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-04-03 DOI: 10.1007/s12539-025-00698-3
Wanhua Huang, Xuecong Tian, Ying Su, Sizhe Zhang, Chen Chen, Cheng Chen

Identification of drug-target interactions (DTIs) is critical for drug discovery and drug repositioning. However, most DTI methods that extract features from drug molecules and protein entities neglect specific substructure information of pharmacological responses, which leads to poor predictive performance. Moreover, most existing methods are based on molecular graphs or molecular descriptors to obtain abstract representations of molecules, but combining the two feature learning methods for DTI prediction remains unexplored. Therefore, a new ASCS-DTI framework for DTI prediction is proposed, which utilizes a substructure attention mechanism to flexibly capture substructures of compounds at different grain sizes, allowing the important substructure information of each molecule to be learned. Additionally, the framework combines three different molecular fingerprinting information to comprehensively characterize molecular representations. A stacked convolutional coding module processes the sequence information of target proteins in a multi-scale and multi-level view. Finally, multi-modal fusion of molecular graph features and molecular fingerprint features, along with multi-modal information encoding of DTIs, is performed by the feature fusion module. The method outperforms six advanced baseline models on different benchmark datasets: Biosnap, BindingDB, and Human, with a significant improvement in performance, particularly in maintaining strong results across different experimental settings.

药物-靶点相互作用(DTI)的鉴定对于药物发现和药物重新定位至关重要。然而,大多数从药物分子和蛋白质实体中提取特征的 DTI 方法都忽略了药理反应的特定亚结构信息,导致预测性能不佳。此外,现有的大多数方法都是基于分子图或分子描述符来获得分子的抽象表征,但将这两种特征学习方法结合起来用于 DTI 预测仍有待探索。因此,本文提出了一种用于 DTI 预测的全新 ASCS-DTI 框架,该框架利用亚结构关注机制灵活捕捉不同晶粒尺寸化合物的亚结构,从而学习到每个分子的重要亚结构信息。此外,该框架还结合了三种不同的分子指纹信息,以全面描述分子表征。堆叠卷积编码模块以多尺度和多层次的视角处理目标蛋白质的序列信息。最后,特征融合模块对分子图特征和分子指纹特征以及 DTI 的多模态信息编码进行多模态融合。该方法在不同基准数据集上的表现优于六种先进的基线模型:该方法在 Biosnap、BindingDB 和 Human 等不同基准数据集上的表现优于六种高级基线模型,性能显著提高,尤其是在不同实验环境下都能保持强劲的结果。
{"title":"Sensing Compound Substructures Combined with Molecular Fingerprinting to Predict Drug-Target Interactions.","authors":"Wanhua Huang, Xuecong Tian, Ying Su, Sizhe Zhang, Chen Chen, Cheng Chen","doi":"10.1007/s12539-025-00698-3","DOIUrl":"https://doi.org/10.1007/s12539-025-00698-3","url":null,"abstract":"<p><p>Identification of drug-target interactions (DTIs) is critical for drug discovery and drug repositioning. However, most DTI methods that extract features from drug molecules and protein entities neglect specific substructure information of pharmacological responses, which leads to poor predictive performance. Moreover, most existing methods are based on molecular graphs or molecular descriptors to obtain abstract representations of molecules, but combining the two feature learning methods for DTI prediction remains unexplored. Therefore, a new ASCS-DTI framework for DTI prediction is proposed, which utilizes a substructure attention mechanism to flexibly capture substructures of compounds at different grain sizes, allowing the important substructure information of each molecule to be learned. Additionally, the framework combines three different molecular fingerprinting information to comprehensively characterize molecular representations. A stacked convolutional coding module processes the sequence information of target proteins in a multi-scale and multi-level view. Finally, multi-modal fusion of molecular graph features and molecular fingerprint features, along with multi-modal information encoding of DTIs, is performed by the feature fusion module. The method outperforms six advanced baseline models on different benchmark datasets: Biosnap, BindingDB, and Human, with a significant improvement in performance, particularly in maintaining strong results across different experimental settings.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CR-deal: Explainable Neural Network for circRNA-RBP Binding Site Recognition and Interpretation.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-27 DOI: 10.1007/s12539-025-00694-7
Yuxiao Wei, Zhebin Tan, Liwei Liu

circRNAs are a type of single-stranded non-coding RNA molecules, and their unique feature is their closed circular structure. The interaction between circRNAs and RNA-binding proteins (RBPs) plays a key role in biological functions and is crucial for studying post-transcriptional regulatory mechanisms. The genome-wide circRNA binding event data obtained by cross-linking immunoprecipitation sequencing technology provides a foundation for constructing efficient computational model prediction methods. However, in existing studies, although machine learning techniques have been applied to predict circRNA-RBP interaction sites, these methods still have room for improvement in accuracy and lack interpretability. We propose CR-deal, which is an interpretable joint deep learning network that predicts the binding sites of circRNA and RBP through genome-wide circRNA data. CR-deal utilizes a graph attention network to unify sequence and structural features into the same view, more effectively utilizing structural features to improve accuracy. It can infer marker genes in the binding site through integrated gradient feature interpretation, thereby inferring functional structural regions in the binding site. We conducted benchmark tests on CR-deal on 37 circRNA datasets and 7 lncRNA datasets, respectively, and obtained the interpretability of CR-deal and discovered functional structural regions through 5 circRNA datasets. We believe that CR-deal can help researchers gain a deeper understanding of the functions and mechanisms of circRNA in living organisms and its critical role in the occurrence and development of diseases. The source code of CR-deal is provided free of charge on https://github.com/liuliwei1980/CR .

{"title":"CR-deal: Explainable Neural Network for circRNA-RBP Binding Site Recognition and Interpretation.","authors":"Yuxiao Wei, Zhebin Tan, Liwei Liu","doi":"10.1007/s12539-025-00694-7","DOIUrl":"https://doi.org/10.1007/s12539-025-00694-7","url":null,"abstract":"<p><p>circRNAs are a type of single-stranded non-coding RNA molecules, and their unique feature is their closed circular structure. The interaction between circRNAs and RNA-binding proteins (RBPs) plays a key role in biological functions and is crucial for studying post-transcriptional regulatory mechanisms. The genome-wide circRNA binding event data obtained by cross-linking immunoprecipitation sequencing technology provides a foundation for constructing efficient computational model prediction methods. However, in existing studies, although machine learning techniques have been applied to predict circRNA-RBP interaction sites, these methods still have room for improvement in accuracy and lack interpretability. We propose CR-deal, which is an interpretable joint deep learning network that predicts the binding sites of circRNA and RBP through genome-wide circRNA data. CR-deal utilizes a graph attention network to unify sequence and structural features into the same view, more effectively utilizing structural features to improve accuracy. It can infer marker genes in the binding site through integrated gradient feature interpretation, thereby inferring functional structural regions in the binding site. We conducted benchmark tests on CR-deal on 37 circRNA datasets and 7 lncRNA datasets, respectively, and obtained the interpretability of CR-deal and discovered functional structural regions through 5 circRNA datasets. We believe that CR-deal can help researchers gain a deeper understanding of the functions and mechanisms of circRNA in living organisms and its critical role in the occurrence and development of diseases. The source code of CR-deal is provided free of charge on https://github.com/liuliwei1980/CR .</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143718686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-24 DOI: 10.1007/s12539-025-00693-8
Xiaoyi Yu, Donglin Zhu, Hongjie Guo, Changjun Zhou, Mohammed A M Elhassan, Mengzhen Wang

Clear cell renal cell carcinoma (ccRCC) is the most common form of renal cell carcinoma in adults, comprising approximately 80% of cases. The lethality of ccRCC rises significantly at stage III or beyond, emphasizing the need for early detection to enable timely therapeutic interventions. This study introduces a non-invasive and efficient classification method, Domain Adaptive Squeeze-and-Excitation Network (DASNet), for grading ccRCC through Computed Tomography (CT) images using advanced deep learning and machine learning techniques. The dataset is enhanced using MedAugment technology and balanced to improve generalization and classification performance. To mitigate overfitting, renal angiomyolipoma (AML) samples are incorporated, increasing data diversity and model robustness. EfficientNet and RegNet serve as foundational models, leveraging local feature extraction and Squeeze-and-Excitation (SE) attention mechanisms to enhance recognition accuracy across grades. Furthermore, Domain-Adversarial Neural Networks (DANNs) are employed to maintain consistency between source and target domains, bolstering the model's generalization ability. The proposed model achieves a classification accuracy of 97.50%, demonstrating efficacy in early ccRCC grade identification. These findings not only offer valuable clinical insights but also establish a foundation for broader application of deep learning in tumor detection.

透明细胞肾细胞癌(ccRCC)是成人肾细胞癌中最常见的一种,约占病例总数的 80%。ccRCC的致死率在III期或III期以上显著上升,因此需要早期检测,以便及时采取治疗干预措施。本研究采用先进的深度学习和机器学习技术,通过计算机断层扫描(CT)图像引入了一种无创高效的分类方法--域自适应挤压激发网络(DASNet),用于对ccRCC进行分级。该数据集利用 MedAugment 技术进行了增强和平衡,以提高泛化和分类性能。为了减少过拟合,还纳入了肾血管肌脂肪瘤(AML)样本,从而增加了数据多样性和模型的鲁棒性。EfficientNet 和 RegNet 作为基础模型,利用局部特征提取和挤压激发(SE)注意机制来提高不同等级的识别准确率。此外,还采用了领域对抗神经网络(DANNs)来保持源领域和目标领域之间的一致性,从而增强了模型的泛化能力。所提出的模型达到了 97.50% 的分类准确率,证明了在早期 ccRCC 等级识别方面的有效性。这些发现不仅提供了有价值的临床见解,还为深度学习在肿瘤检测中的更广泛应用奠定了基础。
{"title":"DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading.","authors":"Xiaoyi Yu, Donglin Zhu, Hongjie Guo, Changjun Zhou, Mohammed A M Elhassan, Mengzhen Wang","doi":"10.1007/s12539-025-00693-8","DOIUrl":"https://doi.org/10.1007/s12539-025-00693-8","url":null,"abstract":"<p><p>Clear cell renal cell carcinoma (ccRCC) is the most common form of renal cell carcinoma in adults, comprising approximately 80% of cases. The lethality of ccRCC rises significantly at stage III or beyond, emphasizing the need for early detection to enable timely therapeutic interventions. This study introduces a non-invasive and efficient classification method, Domain Adaptive Squeeze-and-Excitation Network (DASNet), for grading ccRCC through Computed Tomography (CT) images using advanced deep learning and machine learning techniques. The dataset is enhanced using MedAugment technology and balanced to improve generalization and classification performance. To mitigate overfitting, renal angiomyolipoma (AML) samples are incorporated, increasing data diversity and model robustness. EfficientNet and RegNet serve as foundational models, leveraging local feature extraction and Squeeze-and-Excitation (SE) attention mechanisms to enhance recognition accuracy across grades. Furthermore, Domain-Adversarial Neural Networks (DANNs) are employed to maintain consistency between source and target domains, bolstering the model's generalization ability. The proposed model achieves a classification accuracy of 97.50%, demonstrating efficacy in early ccRCC grade identification. These findings not only offer valuable clinical insights but also establish a foundation for broader application of deep learning in tumor detection.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Clustering-Based Metabolic Stratification of Non-Small Cell Lung Cancer Patients Through Integration of Somatic Mutation Profile and Network Propagation Algorithm.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-18 DOI: 10.1007/s12539-025-00699-2
Xu Luo, Xinpeng Zhang, Dongqing Su, Honghao Li, Min Zou, Yuqiang Xiong, Lei Yang

As a common malignancy of the lower respiratory tract, non-small cell lung cancer (NSCLC) represents a major oncological challenge globally, characterized by high incidence and mortality rates. Recent research highlights the critical involvement of somatic mutations in the onset and development of NSCLC. Stratification of NSCLC patients based on somatic mutation data could facilitate the identification of patients likely to respond to personalized therapeutic strategies. However, stratification of NSCLC patients using somatic mutation data is challenging due to the sparseness of this data. In this study, based on sparse somatic mutation data from 4581 NSCLC patients from the Memorial Sloan Kettering Cancer Center (MSKCC) database, we systematically evaluate the metabolic pathway activity in NSCLC patients through the application of network propagation algorithm and computational biology algorithms. Based on these metabolic pathways associated with prognosis, as recognized through univariate Cox regression analysis, NSCLC patients are stratified using the deep clustering algorithm to explore the optimal classification strategy, thereby establishing biologically meaningful metabolic subtypes of NSCLC patients. The precise NSCLC metabolic subtypes obtained from the network propagation algorithm and deep clustering algorithm are systematically evaluated and validated for survival benefits of immunotherapy. Our research marks progress towards developing a universal approach for classifying NSCLC patients based solely on somatic mutation profiles, employing deep clustering algorithm. The implementation of our research will help to deepen the analysis of NSCLC patients' metabolic subtypes from the perspective of tumor microenvironment, providing a strong basis for the formulation of more precise personalized treatment plans.

{"title":"Deep Clustering-Based Metabolic Stratification of Non-Small Cell Lung Cancer Patients Through Integration of Somatic Mutation Profile and Network Propagation Algorithm.","authors":"Xu Luo, Xinpeng Zhang, Dongqing Su, Honghao Li, Min Zou, Yuqiang Xiong, Lei Yang","doi":"10.1007/s12539-025-00699-2","DOIUrl":"https://doi.org/10.1007/s12539-025-00699-2","url":null,"abstract":"<p><p>As a common malignancy of the lower respiratory tract, non-small cell lung cancer (NSCLC) represents a major oncological challenge globally, characterized by high incidence and mortality rates. Recent research highlights the critical involvement of somatic mutations in the onset and development of NSCLC. Stratification of NSCLC patients based on somatic mutation data could facilitate the identification of patients likely to respond to personalized therapeutic strategies. However, stratification of NSCLC patients using somatic mutation data is challenging due to the sparseness of this data. In this study, based on sparse somatic mutation data from 4581 NSCLC patients from the Memorial Sloan Kettering Cancer Center (MSKCC) database, we systematically evaluate the metabolic pathway activity in NSCLC patients through the application of network propagation algorithm and computational biology algorithms. Based on these metabolic pathways associated with prognosis, as recognized through univariate Cox regression analysis, NSCLC patients are stratified using the deep clustering algorithm to explore the optimal classification strategy, thereby establishing biologically meaningful metabolic subtypes of NSCLC patients. The precise NSCLC metabolic subtypes obtained from the network propagation algorithm and deep clustering algorithm are systematically evaluated and validated for survival benefits of immunotherapy. Our research marks progress towards developing a universal approach for classifying NSCLC patients based solely on somatic mutation profiles, employing deep clustering algorithm. The implementation of our research will help to deepen the analysis of NSCLC patients' metabolic subtypes from the perspective of tumor microenvironment, providing a strong basis for the formulation of more precise personalized treatment plans.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Synergistic Drug Combinations Based on Fusion of Cell and Drug Molecular Structures.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-15 DOI: 10.1007/s12539-025-00695-6
Shiyu Yan, Gang Yu, Jiaoxing Yang, Lingna Chen

Drug combination therapy has shown improved efficacy and decreased adverse effects, making it a practical approach for conditions like cancer. However, discovering all potential synergistic drug combinations requires extensive experimentation, which can be challenging. Recent research utilizing deep learning techniques has shown promise in reducing the number of experiments and overall workload by predicting synergistic drug combinations. Therefore, developing reliable and effective computational methods for predicting these combinations is essential. This paper proposed a novel method called Drug-molecule Connect Cell (DconnC) for predicting synergistic drug combinations. DconnC leverages cellular features as nodes to establish connections between drug molecular structures, allowing the extraction of pertinent features. These features are then optimized through self-augmented contrastive learning using bidirectional recurrent neural networks (Bi-RNN) and long short-term memory (LSTM) models, ultimately predicting the drug synergy. By integrating information about the molecular structure of drugs for the extraction of cell features, DconnC uncovers the inherent connection between drug molecular structures and cellular characteristics, thus improving the accuracy of predictions. The performance of our method is evaluated using a five-fold cross validation approach, demonstrating a 35 % reduction in the mean square error (MSE) compared to the next-best method. Moreover, our method significantly outperformed alternative approaches in various evaluation criteria, particularly in predicting different cell lines and Loewe synergy score intervals.

{"title":"Predicting Synergistic Drug Combinations Based on Fusion of Cell and Drug Molecular Structures.","authors":"Shiyu Yan, Gang Yu, Jiaoxing Yang, Lingna Chen","doi":"10.1007/s12539-025-00695-6","DOIUrl":"https://doi.org/10.1007/s12539-025-00695-6","url":null,"abstract":"<p><p>Drug combination therapy has shown improved efficacy and decreased adverse effects, making it a practical approach for conditions like cancer. However, discovering all potential synergistic drug combinations requires extensive experimentation, which can be challenging. Recent research utilizing deep learning techniques has shown promise in reducing the number of experiments and overall workload by predicting synergistic drug combinations. Therefore, developing reliable and effective computational methods for predicting these combinations is essential. This paper proposed a novel method called Drug-molecule Connect Cell (DconnC) for predicting synergistic drug combinations. DconnC leverages cellular features as nodes to establish connections between drug molecular structures, allowing the extraction of pertinent features. These features are then optimized through self-augmented contrastive learning using bidirectional recurrent neural networks (Bi-RNN) and long short-term memory (LSTM) models, ultimately predicting the drug synergy. By integrating information about the molecular structure of drugs for the extraction of cell features, DconnC uncovers the inherent connection between drug molecular structures and cellular characteristics, thus improving the accuracy of predictions. The performance of our method is evaluated using a five-fold cross validation approach, demonstrating a 35 <math><mo>%</mo></math> reduction in the mean square error (MSE) compared to the next-best method. Moreover, our method significantly outperformed alternative approaches in various evaluation criteria, particularly in predicting different cell lines and Loewe synergy score intervals.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-11 DOI: 10.1007/s12539-025-00696-5
Watshara Shoombuatong, Pakpoom Mookdarsanit, Lawankorn Mookdarsanit, Nalini Schaduangrat, Saeed Ahmed, Muhammad Kabir, Pramote Chumnanpuen

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) as a recognized cause of community-acquired and hospital infections has brought about a need for the efficient and accurate identification of peptides with anti-MRSA properties in drug discovery and development pipelines. However, current experimental methods often tend to be labor- and resource-intensive. Thus, there is an immediate requirement to develop practical computational solutions for identifying sequence-based anti-MRSA peptides. Lately, pre-trained protein language models (pLMs) have emerged as a remarkable advancement for encoding peptide sequences as discriminative feature embeddings, uncovering plentiful protein-level information and successfully repurposing it for in silico peptide property prediction. In this study, we present pLM4MRSA, a framework based on pLMs designed to enhance the accuracy of predicting anti-MRSA peptides. In this framework, we combine feature embeddings from various pLMs, such as ProtTrans, and evolutionary-scale modeling (ESM-2) which provide complementary information for prediction. These individual pLM strengths are integrated to form hybrid feature embeddings. Next, we apply principal component analysis (PCA) to process these hybrid embeddings. The resulting PCA-transformed feature vectors are then used as inputs for constructing the predictive model. Experimental results on the independent test dataset showed that the proposed pLM4MRSA approach achieved a balanced accuracy and Matthew correlation coefficient of 0.983 and 0.980, respectively, representing remarkable improvements over the state-of-the-art methods by 2.53%-4.83% and 7.73%-13.23%, respectively. This indicates that pLM4MRSA is a high-performance prediction model with excellent scope of applicability. Additionally, comparison with well-known hand-crafted features demonstrated that the proposed hybrid feature embeddings complement each other effectively, capturing discriminative patterns for more accurate anti-MRSA peptide prediction. We anticipate that pLM4MRSA will serve as an effective solution for accurate and high-capacity prediction of anti-MRSA peptides from peptide sequences.

{"title":"Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.","authors":"Watshara Shoombuatong, Pakpoom Mookdarsanit, Lawankorn Mookdarsanit, Nalini Schaduangrat, Saeed Ahmed, Muhammad Kabir, Pramote Chumnanpuen","doi":"10.1007/s12539-025-00696-5","DOIUrl":"https://doi.org/10.1007/s12539-025-00696-5","url":null,"abstract":"<p><p>The emergence of methicillin-resistant Staphylococcus aureus (MRSA) as a recognized cause of community-acquired and hospital infections has brought about a need for the efficient and accurate identification of peptides with anti-MRSA properties in drug discovery and development pipelines. However, current experimental methods often tend to be labor- and resource-intensive. Thus, there is an immediate requirement to develop practical computational solutions for identifying sequence-based anti-MRSA peptides. Lately, pre-trained protein language models (pLMs) have emerged as a remarkable advancement for encoding peptide sequences as discriminative feature embeddings, uncovering plentiful protein-level information and successfully repurposing it for in silico peptide property prediction. In this study, we present pLM4MRSA, a framework based on pLMs designed to enhance the accuracy of predicting anti-MRSA peptides. In this framework, we combine feature embeddings from various pLMs, such as ProtTrans, and evolutionary-scale modeling (ESM-2) which provide complementary information for prediction. These individual pLM strengths are integrated to form hybrid feature embeddings. Next, we apply principal component analysis (PCA) to process these hybrid embeddings. The resulting PCA-transformed feature vectors are then used as inputs for constructing the predictive model. Experimental results on the independent test dataset showed that the proposed pLM4MRSA approach achieved a balanced accuracy and Matthew correlation coefficient of 0.983 and 0.980, respectively, representing remarkable improvements over the state-of-the-art methods by 2.53%-4.83% and 7.73%-13.23%, respectively. This indicates that pLM4MRSA is a high-performance prediction model with excellent scope of applicability. Additionally, comparison with well-known hand-crafted features demonstrated that the proposed hybrid feature embeddings complement each other effectively, capturing discriminative patterns for more accurate anti-MRSA peptide prediction. We anticipate that pLM4MRSA will serve as an effective solution for accurate and high-capacity prediction of anti-MRSA peptides from peptide sequences.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition. 生物医学图像识别的强化协作-竞争表示。
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-01 Epub Date: 2025-01-22 DOI: 10.1007/s12539-024-00683-2
Junwei Jin, Songbo Zhou, Yanting Li, Tanxin Zhu, Chao Fan, Hua Zhang, Peng Li

Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method. RCCRC enhances the contribution of different classes by introducing dual competitive constraints into the objective function. The first constraint integrates the collaborative space representation akin to holistic data, promoting the representation contribution of similar classes. The second constraint introduces specific class subspace representations to encourage competition among all classes, enhancing the discriminative nature of representation vectors. By unifying these two constraints, RCCRC effectively explores both global and specific data features in the reconstruction space. Extensive experiments on various biomedical image databases are conducted to exhibit the advantage of the proposed method in comparison with several state-of-the-art classification algorithms.

人工智能技术在现代生物医学图像分析中已显示出显著的诊断效果。然而,由于不同疾病之间存在相似的病理,以及同一疾病内部病理的多样性,人工智能的实际应用受到了极大的限制。为了解决这一问题,本文提出了一种增强的协作-竞争表示分类(RCCRC)方法。RCCRC通过在目标函数中引入双竞争约束来增强不同类的贡献。第一个约束集成了类似于整体数据的协作空间表示,促进了类似类的表示贡献。第二个约束引入了特定的类子空间表示,以鼓励所有类之间的竞争,增强了表示向量的判别性。通过统一这两个约束,RCCRC可以有效地探索重构空间中的全局和特定数据特征。在各种生物医学图像数据库上进行了大量实验,与几种最先进的分类算法相比,展示了所提出方法的优势。
{"title":"Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition.","authors":"Junwei Jin, Songbo Zhou, Yanting Li, Tanxin Zhu, Chao Fan, Hua Zhang, Peng Li","doi":"10.1007/s12539-024-00683-2","DOIUrl":"10.1007/s12539-024-00683-2","url":null,"abstract":"<p><p>Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method. RCCRC enhances the contribution of different classes by introducing dual competitive constraints into the objective function. The first constraint integrates the collaborative space representation akin to holistic data, promoting the representation contribution of similar classes. The second constraint introduces specific class subspace representations to encourage competition among all classes, enhancing the discriminative nature of representation vectors. By unifying these two constraints, RCCRC effectively explores both global and specific data features in the reconstruction space. Extensive experiments on various biomedical image databases are conducted to exhibit the advantage of the proposed method in comparison with several state-of-the-art classification algorithms.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"215-230"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy. misORFPred:使用增强型可扩展 k-mer 和动态组合投票策略挖掘植物 Pri-miRNA 中可翻译 sORF 的新方法。
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-14 DOI: 10.1007/s12539-024-00661-8
Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan

The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.

据观察,初级微小RNA(pri-miRNA)含有可翻译的小开放阅读框(sORF),可作为独立元素编码肽。相关研究证明,sORFs 在调节生物性状表达方面具有重要意义。现有的预测 sORFs 编码潜力的方法经常忽略这些数据,或将其归类为阴性样本,从而阻碍了在 pri-miRNAs 中识别更多可翻译的 sORFs。有鉴于此,我们提出了一种名为 misORFPred 的新方法。具体来说,该方法设计了一种增强型可扩展 k-mer(ESKmer),可同时整合序列内的组成信息和序列间的距离信息,以提取核苷酸序列特征。在特征选择之后,将最优特征和多个机器学习分类器结合起来构建集合模型,其中提出了一种新设计的动态集合投票策略(DEVS),用于动态调整基础分类器的权重,并为每个未标记样本自适应地选择最优基础分类器。交叉验证结果表明,ESKmer 和 DEVS 对该分类任务至关重要,可以提高模型性能。独立测试结果表明,misORFPred 的性能优于最先进的方法。此外,我们还在不同植物物种的基因组上执行了 misORFPerd,并对预测结果进行了全面分析。总之,misORFPred 是识别植物 pri-miRNA 中可翻译 sORFs 的强大工具,可为后续生物学实验提供高度可信的候选者。
{"title":"misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy.","authors":"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan","doi":"10.1007/s12539-024-00661-8","DOIUrl":"10.1007/s12539-024-00661-8","url":null,"abstract":"<p><p>The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"114-133"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. 细胞命运动力学重构发现 TPT1 和 PTPRZ1 反馈环是小儿胶质母细胞瘤-免疫细胞网络分化的主调控因子
IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-10-17 DOI: 10.1007/s12539-024-00657-4
Abicumaran Uthamacumaran

Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.

小儿胶质母细胞瘤是一种复杂的动态疾病,由于其主要由表型可塑性驱动的多种适应行为而难以治疗。综合数据科学和网络理论管道为研究胶质母细胞瘤细胞命运动态,尤其是随时间发生的表型转变提供了新方法。在这里,我们使用各种单细胞轨迹推断算法来推断调节小儿胶质母细胞瘤-免疫细胞网络的信号动态。我们发现 GATA2、PTPRZ1、TPT1、MTRNR2L1/2、OLIG1/2、SOX11、FXYD6、SEZ6L、PDGFRA、EGFR、S100B、WNT、TNF α 和 NF-kB 是调控胶质母细胞瘤-免疫网络动态的关键过渡基因或信号,揭示了潜在的临床相关靶点。此外,我们还重建了胶质母细胞瘤细胞命运吸引子,发现胶质母细胞瘤表型转换过程中存在复杂的分叉动态,这表明可能存在一种因果模式在驱动胶质母细胞瘤的进化和细胞命运决策。我们的研究结果对开发胶质母细胞瘤靶向疗法以及继续整合定量方法和人工智能(AI)以了解小儿胶质母细胞瘤肿瘤-免疫相互作用具有重要意义。
{"title":"Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks.","authors":"Abicumaran Uthamacumaran","doi":"10.1007/s12539-024-00657-4","DOIUrl":"10.1007/s12539-024-00657-4","url":null,"abstract":"<p><p>Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF <math><mi>α</mi></math> , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"59-85"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Interdisciplinary Sciences: Computational Life Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1