Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method. RCCRC enhances the contribution of different classes by introducing dual competitive constraints into the objective function. The first constraint integrates the collaborative space representation akin to holistic data, promoting the representation contribution of similar classes. The second constraint introduces specific class subspace representations to encourage competition among all classes, enhancing the discriminative nature of representation vectors. By unifying these two constraints, RCCRC effectively explores both global and specific data features in the reconstruction space. Extensive experiments on various biomedical image databases are conducted to exhibit the advantage of the proposed method in comparison with several state-of-the-art classification algorithms.
{"title":"Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition.","authors":"Junwei Jin, Songbo Zhou, Yanting Li, Tanxin Zhu, Chao Fan, Hua Zhang, Peng Li","doi":"10.1007/s12539-024-00683-2","DOIUrl":"10.1007/s12539-024-00683-2","url":null,"abstract":"<p><p>Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method. RCCRC enhances the contribution of different classes by introducing dual competitive constraints into the objective function. The first constraint integrates the collaborative space representation akin to holistic data, promoting the representation contribution of similar classes. The second constraint introduces specific class subspace representations to encourage competition among all classes, enhancing the discriminative nature of representation vectors. By unifying these two constraints, RCCRC effectively explores both global and specific data features in the reconstruction space. Extensive experiments on various biomedical image databases are conducted to exhibit the advantage of the proposed method in comparison with several state-of-the-art classification algorithms.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"215-230"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143004934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-14DOI: 10.1007/s12539-024-00661-8
Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan
The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.
{"title":"misORFPred: A Novel Method to Mine Translatable sORFs in Plant Pri-miRNAs Using Enhanced Scalable k-mer and Dynamic Ensemble Voting Strategy.","authors":"Haibin Li, Jun Meng, Zhaowei Wang, Yushi Luan","doi":"10.1007/s12539-024-00661-8","DOIUrl":"10.1007/s12539-024-00661-8","url":null,"abstract":"<p><p>The primary microRNAs (pri-miRNAs) have been observed to contain translatable small open reading frames (sORFs) that can encode peptides as an independent element. Relevant studies have proven that those of sORFs are of significance in regulating the expression of biological traits. The existing methods for predicting the coding potential of sORFs frequently overlook this data or categorize them as negative samples, impeding the identification of additional translatable sORFs in pri-miRNAs. In light of this, a novel method named misORFPred has been proposed. Specifically, an enhanced scalable k-mer (ESKmer) that simultaneously integrates the composition information within a sequence and distance information between sequences is designed to extract the nucleotide sequence features. After feature selection, the optimal features and several machine learning classifiers are combined to construct the ensemble model, where a newly devised dynamic ensemble voting strategy (DEVS) is proposed to dynamically adjust the weights of base classifiers and adaptively select the optimal base classifiers for each unlabeled sample. Cross-validation results suggest that ESKmer and DEVS are essential for this classification task and could boost model performance. Independent testing results indicate that misORFPred outperforms the state-of-the-art methods. Furthermore, we execute misORFPerd on the genomes of various plant species and perform a thorough analysis of the predicted outcomes. Taken together, misORFPred is a powerful tool for identifying the translatable sORFs in plant pri-miRNAs and can provide highly trusted candidates for subsequent biological experiments.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"114-133"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-17DOI: 10.1007/s12539-024-00657-4
Abicumaran Uthamacumaran
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
{"title":"Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks.","authors":"Abicumaran Uthamacumaran","doi":"10.1007/s12539-024-00657-4","DOIUrl":"10.1007/s12539-024-00657-4","url":null,"abstract":"<p><p>Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF <math><mi>α</mi></math> , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"59-85"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142464356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-28DOI: 10.1007/s12539-024-00664-5
Yuhong Su, Xincheng Zeng, Lingfeng Zhang, Yanlin Bian, Yangjing Wang, Buyong Ma
Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.
{"title":"ABTrans: A Transformer-based Model for Predicting Interaction between Anti-Aβ Antibodies and Peptides.","authors":"Yuhong Su, Xincheng Zeng, Lingfeng Zhang, Yanlin Bian, Yangjing Wang, Buyong Ma","doi":"10.1007/s12539-024-00664-5","DOIUrl":"10.1007/s12539-024-00664-5","url":null,"abstract":"<p><p>Antibodies against Aβ peptide have been recently approved to treat Alzheimer's disease, underscoring the importance of understanding their interactions for developing more potent treatments. Here we investigated the interaction between anti-Aβ antibodies and various peptides using a deep learning model. Our model, ABTrans, was trained on dodecapeptide sequences from phage display experiments and known anti-Aβ antibody sequences sourced from public sources. It classified the binding ability between anti-Aβ antibodies and dodecapeptides into four levels: not binding, weak binding, medium binding, and strong binding, achieving an accuracy of 0.83. Using ABTrans, we examined the cross-reaction of anti-Aβ antibodies with other human amyloidogenic proteins, revealing that Aducanumab and Donanemab exhibited the least cross-reactivity. Additionally, we systematically screened interactions between eleven selected anti-Aβ antibodies and all human proteins to identify potential off-target candidates.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"140-152"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-23DOI: 10.1007/s12539-024-00653-8
Qianqian Song, Taobo Hu, Baosheng Liang, Shihai Li, Yang Li, Jinbo Wu, Shu Wang, Xiaohua Zhou
The development of third-generation sequencing has accelerated the boom of single nucleotide polymorphism (SNP) calling methods, but evaluating accuracy remains challenging owing to the absence of the SNP gold standard. The definitions for without-gold-standard and performance metrics and their estimation are urgently needed. Additionally, the possible correlations between different SNP loci should also be further explored. To address these challenges, we first introduced the concept of a gold standard and imperfect gold standard under the consistency framework and gave the corresponding definitions of sensitivity and specificity. A latent class model (LCM) was established to estimate the sensitivity and specificity of callers. Furthermore, we incorporated different dependency structures into LCM to investigate their impact on sensitivity and specificity. The performance of LCM was illustrated by comparing the accuracy of BCFtools, DeepVariant, FreeBayes, and GATK on various datasets. Through estimations across multiple datasets, the results indicate that LCM is well-suitable for evaluating callers without the SNP gold standard, and accurate inclusion of the dependency between variations is crucial for better performance ranking. DeepVariant has a higher sum of sensitivity and specificity than other callers, followed by GATK and BCFtools. FreeBayes has low sensitivity but high specificity. Notably, appropriate sequencing coverage is another important factor for precise callers' evaluation. Most importantly, a web interface for assessing and comparing different callers was developed to simplify the evaluation process.
第三代测序技术的发展加速了单核苷酸多态性(SNP)调用方法的蓬勃发展,但由于 SNP 金标准的缺失,评估其准确性仍具有挑战性。目前急需对无金标准和性能指标进行定义和估算。此外,还应进一步探讨不同 SNP 位点之间可能存在的相关性。为了应对这些挑战,我们首先介绍了一致性框架下金标准和不完全金标准的概念,并给出了灵敏度和特异性的相应定义。我们建立了一个潜类模型(LCM)来估算调用者的灵敏度和特异度。此外,我们还在 LCM 中加入了不同的依赖结构,以研究它们对灵敏度和特异性的影响。通过比较 BCFtools、DeepVariant、FreeBayes 和 GATK 在不同数据集上的准确性,说明了 LCM 的性能。通过对多个数据集的估算,结果表明 LCM 非常适合在没有 SNP 黄金标准的情况下评估调用者,而准确纳入变异之间的依赖性对于更好的性能排名至关重要。DeepVariant 的灵敏度和特异性之和高于其他调用器,其次是 GATK 和 BCFtools。FreeBayes 的灵敏度较低,但特异性较高。值得注意的是,适当的测序覆盖率是评估精确调用者的另一个重要因素。最重要的是,我们开发了一个用于评估和比较不同调用仪的网络界面,以简化评估过程。
{"title":"cascAGS: Comparative Analysis of SNP Calling Methods for Human Genome Data in the Absence of Gold Standard.","authors":"Qianqian Song, Taobo Hu, Baosheng Liang, Shihai Li, Yang Li, Jinbo Wu, Shu Wang, Xiaohua Zhou","doi":"10.1007/s12539-024-00653-8","DOIUrl":"10.1007/s12539-024-00653-8","url":null,"abstract":"<p><p>The development of third-generation sequencing has accelerated the boom of single nucleotide polymorphism (SNP) calling methods, but evaluating accuracy remains challenging owing to the absence of the SNP gold standard. The definitions for without-gold-standard and performance metrics and their estimation are urgently needed. Additionally, the possible correlations between different SNP loci should also be further explored. To address these challenges, we first introduced the concept of a gold standard and imperfect gold standard under the consistency framework and gave the corresponding definitions of sensitivity and specificity. A latent class model (LCM) was established to estimate the sensitivity and specificity of callers. Furthermore, we incorporated different dependency structures into LCM to investigate their impact on sensitivity and specificity. The performance of LCM was illustrated by comparing the accuracy of BCFtools, DeepVariant, FreeBayes, and GATK on various datasets. Through estimations across multiple datasets, the results indicate that LCM is well-suitable for evaluating callers without the SNP gold standard, and accurate inclusion of the dependency between variations is crucial for better performance ranking. DeepVariant has a higher sum of sensitivity and specificity than other callers, followed by GATK and BCFtools. FreeBayes has low sensitivity but high specificity. Notably, appropriate sequencing coverage is another important factor for precise callers' evaluation. Most importantly, a web interface for assessing and comparing different callers was developed to simplify the evaluation process.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"1-11"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142499766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-22DOI: 10.1007/s12539-024-00667-2
Aimin Li, Mingyue Li, Rong Fei, Saurav Mallik, Bo Hu, Yue Yu
Gene Regulatory Networks (GRNs) reveal complex interactions between genes in organisms, crucial for understanding the life system's operation. The rapid development of biotechnology, especially single-cell RNA sequencing (scRNA-seq), has generated a large amount of scRNA-seq data, which can be analyzed to explore the regulatory relationships between genes at the single-cell level. Previous models used to construct GRNs mainly aim at constructing associative relationships between genes, but usually fail to accurately reveal the causality between genes. Therefore, we present a hybrid deep learning model called EfficientNet-resDDSC (the EfficientNet with Residual Blocks and Depthwise Separable Dilated Convolutions) to infer causality between genes. The model inherits the basic structure of EfficientNet-B0 and incorporates residual blocks as well as dilated convolutions. The model's ability to extract low-level features at the primary stage is enhanced by introducing residual blocks. The model combines Depthwise Separable Convolution (DSC) in the inverted linear bottleneck layers with the dilated convolutions to expand the model's receptive fields without increasing the computational effort. This design enables the model to comprehensively reveal potential relationships among different genes in high-dimensional and high-noise single-cell data. In comparison with the five existing deep learning network models, EfficientNet-resDDSC's overall performance is significantly better than others on four datasets. In this study, EfficientNet-resDDSC was further applied to construct GRNs for breast cancer patients, focusing on the related regulatory genes of the key gene BRCA1, which contributes to the advancement of breast cancer research and treatment strategies.
{"title":"EfficientNet-resDDSC: A Hybrid Deep Learning Model Integrating Residual Blocks and Dilated Convolutions for Inferring Gene Causality in Single-Cell Data.","authors":"Aimin Li, Mingyue Li, Rong Fei, Saurav Mallik, Bo Hu, Yue Yu","doi":"10.1007/s12539-024-00667-2","DOIUrl":"10.1007/s12539-024-00667-2","url":null,"abstract":"<p><p>Gene Regulatory Networks (GRNs) reveal complex interactions between genes in organisms, crucial for understanding the life system's operation. The rapid development of biotechnology, especially single-cell RNA sequencing (scRNA-seq), has generated a large amount of scRNA-seq data, which can be analyzed to explore the regulatory relationships between genes at the single-cell level. Previous models used to construct GRNs mainly aim at constructing associative relationships between genes, but usually fail to accurately reveal the causality between genes. Therefore, we present a hybrid deep learning model called EfficientNet-resDDSC (the EfficientNet with Residual Blocks and Depthwise Separable Dilated Convolutions) to infer causality between genes. The model inherits the basic structure of EfficientNet-B0 and incorporates residual blocks as well as dilated convolutions. The model's ability to extract low-level features at the primary stage is enhanced by introducing residual blocks. The model combines Depthwise Separable Convolution (DSC) in the inverted linear bottleneck layers with the dilated convolutions to expand the model's receptive fields without increasing the computational effort. This design enables the model to comprehensively reveal potential relationships among different genes in high-dimensional and high-noise single-cell data. In comparison with the five existing deep learning network models, EfficientNet-resDDSC's overall performance is significantly better than others on four datasets. In this study, EfficientNet-resDDSC was further applied to construct GRNs for breast cancer patients, focusing on the related regulatory genes of the key gene BRCA1, which contributes to the advancement of breast cancer research and treatment strategies.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"166-184"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peptide detectability measures the relationship between the protein composition and abundance in the sample and the peptides identified during the analytical procedure. This relationship has significant implications for the fundamental tasks of proteomics. Existing methods primarily rely on a single type of feature representation, which limits their ability to capture the intricate and diverse characteristics of peptides. In response to this limitation, we introduce DeepPD, an innovative deep learning framework incorporating multi-feature representation and the information bottleneck principle (IBP) to predict peptide detectability. DeepPD extracts semantic information from peptides using evolutionary scale modeling 2 (ESM-2) and integrates sequence and evolutionary information to construct the feature space collaboratively. The IBP effectively guides the feature learning process, minimizing redundancy in the feature space. Experimental results across various datasets demonstrate that DeepPD outperforms state-of-the-art methods. Furthermore, we demonstrate that DeepPD exhibits competitive generalization and transfer learning capabilities across diverse datasets and species. In conclusion, DeepPD emerges as the most effective method for predicting peptide detectability, showcasing its potential applicability to other protein sequence prediction tasks.
{"title":"DeepPD: A Deep Learning Method for Predicting Peptide Detectability Based on Multi-feature Representation and Information Bottleneck.","authors":"Fenglin Li, Yannan Bin, Jianping Zhao, Chunhou Zheng","doi":"10.1007/s12539-024-00665-4","DOIUrl":"10.1007/s12539-024-00665-4","url":null,"abstract":"<p><p>Peptide detectability measures the relationship between the protein composition and abundance in the sample and the peptides identified during the analytical procedure. This relationship has significant implications for the fundamental tasks of proteomics. Existing methods primarily rely on a single type of feature representation, which limits their ability to capture the intricate and diverse characteristics of peptides. In response to this limitation, we introduce DeepPD, an innovative deep learning framework incorporating multi-feature representation and the information bottleneck principle (IBP) to predict peptide detectability. DeepPD extracts semantic information from peptides using evolutionary scale modeling 2 (ESM-2) and integrates sequence and evolutionary information to construct the feature space collaboratively. The IBP effectively guides the feature learning process, minimizing redundancy in the feature space. Experimental results across various datasets demonstrate that DeepPD outperforms state-of-the-art methods. Furthermore, we demonstrate that DeepPD exhibits competitive generalization and transfer learning capabilities across diverse datasets and species. In conclusion, DeepPD emerges as the most effective method for predicting peptide detectability, showcasing its potential applicability to other protein sequence prediction tasks.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"200-214"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.
{"title":"AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network.","authors":"Daixi Li, Yuqi Zhu, Wujie Zhang, Jing Liu, Xiaochen Yang, Zhihong Liu, Dongqing Wei","doi":"10.1007/s12539-024-00662-7","DOIUrl":"10.1007/s12539-024-00662-7","url":null,"abstract":"<p><p>The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"101-113"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-06DOI: 10.1007/s12539-024-00660-9
Yajing Guo, Xiujuan Lei, Shuyu Li
Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.
{"title":"An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites.","authors":"Yajing Guo, Xiujuan Lei, Shuyu Li","doi":"10.1007/s12539-024-00660-9","DOIUrl":"10.1007/s12539-024-00660-9","url":null,"abstract":"<p><p>Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"86-100"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-09-30DOI: 10.1007/s12539-024-00656-5
Minghui Du, Yuxiang Ren, Yang Zhang, Wenwen Li, Hongtao Yang, Huiying Chu, Yongshan Zhao
The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.
{"title":"CSEL-BGC: A Bioinformatics Framework Integrating Machine Learning for Defining the Biosynthetic Evolutionary Landscape of Uncharacterized Antibacterial Natural Products.","authors":"Minghui Du, Yuxiang Ren, Yang Zhang, Wenwen Li, Hongtao Yang, Huiying Chu, Yongshan Zhao","doi":"10.1007/s12539-024-00656-5","DOIUrl":"10.1007/s12539-024-00656-5","url":null,"abstract":"<p><p>The sluggish pace of new antibacterial drug development reflects a vulnerability in the face of the current severe threat posed by bacterial resistance. Microbial natural products (NPs), as a reservoir of immense chemical potential, have emerged as the most promising avenue for the discovery of next generation antibacterial agent. Directly accessing the antibacterial activity of potential products derived from biosynthetic gene clusters (BGCs) would significantly expedite the process. To tackle this issue, we propose a CSEL-BGC framework that integrates machine learning (ML) techniques. This framework involves the development of a novel cascade-stacking ensemble learning (CSEL) model and the establishment of a groundbreaking model evaluation system. Based on this framework, we predict 6,666 BGCs with antibacterial activity from 3,468 complete bacterial genomes and elucidate a biosynthetic evolutionary landscape to reveal their antibacterial potential. This provides crucial insights for interpretating the synthesis and secretion mechanisms of unknown NPs.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"27-41"},"PeriodicalIF":3.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142346017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}