Jiashuai Liu, Zhenmin Fan, Xiao Liu, Xiao Xu, Mingyuan Liu, Xia Ye, Xiaoyan Deng
{"title":"Effect of exercise rehabilitation on hemodynamic performance after carotid artery stenting: a numerical study.","authors":"Jiashuai Liu, Zhenmin Fan, Xiao Liu, Xiao Xu, Mingyuan Liu, Xia Ye, Xiaoyan Deng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A high in-stent restenosis rate and thrombosis have compromised clinical benefits after vascular stent placement. Exercise rehabilitation after stenting emerges as a promising and practical therapeutic strategy to improve the clinical performance of this therapy, although it remains controversial. The present study aimed to explore the impact of exercise training on hemodynamic performance after vascular stent implantation. Different 3-dimensional computational models based on the patient-specific carotids were constructed to calculate hemodynamic parameters, including flow velocity, time-averaged wall shear (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT). The results demonstrated that exercise training increased TAWSS but decreased OSI and RRT in some cases after the intervention, and high-intensity exercise further suppressed the adverse blood flow. However, exercise training remarkably reduced TAWSS and elevated OSI and RRT in patients with mild stenosis at upstream of stented segment. Additionally, we discovered that the hemodynamic environment change induced by exercise training was not significant compared to the stent position in some cases. Exercise had a less beneficial impact on the disturbed blood flow after the distal common carotid artery (CCA) stenting. These findings highlighted that exercise-induced hemodynamic changes differ under different conditions. The exercise training for the intervention patients should only be performed after a comprehensive vascular function assessment.</p>","PeriodicalId":6897,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"25 2","pages":"3-13"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"5","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A high in-stent restenosis rate and thrombosis have compromised clinical benefits after vascular stent placement. Exercise rehabilitation after stenting emerges as a promising and practical therapeutic strategy to improve the clinical performance of this therapy, although it remains controversial. The present study aimed to explore the impact of exercise training on hemodynamic performance after vascular stent implantation. Different 3-dimensional computational models based on the patient-specific carotids were constructed to calculate hemodynamic parameters, including flow velocity, time-averaged wall shear (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT). The results demonstrated that exercise training increased TAWSS but decreased OSI and RRT in some cases after the intervention, and high-intensity exercise further suppressed the adverse blood flow. However, exercise training remarkably reduced TAWSS and elevated OSI and RRT in patients with mild stenosis at upstream of stented segment. Additionally, we discovered that the hemodynamic environment change induced by exercise training was not significant compared to the stent position in some cases. Exercise had a less beneficial impact on the disturbed blood flow after the distal common carotid artery (CCA) stenting. These findings highlighted that exercise-induced hemodynamic changes differ under different conditions. The exercise training for the intervention patients should only be performed after a comprehensive vascular function assessment.
高支架内再狭窄率和血栓形成损害了血管支架置入术后的临床疗效。支架植入术后的运动康复是一种很有前景且切实可行的治疗策略,可改善该疗法的临床表现,但目前仍存在争议。本研究旨在探讨运动训练对血管支架植入术后血流动力学表现的影响。研究人员根据患者特异性颈动脉构建了不同的三维计算模型,以计算血流动力学参数,包括流速、时间平均壁剪切力(TAWSS)、振荡剪切力指数(OSI)和相对滞留时间(RRT)。结果表明,干预后运动训练增加了TAWSS,但在某些情况下降低了OSI和RRT,高强度运动进一步抑制了不利的血流。然而,在支架段上游轻度狭窄的患者中,运动训练明显降低了 TAWSS,升高了 OSI 和 RRT。此外,我们还发现,在某些病例中,运动训练引起的血流动力学环境变化与支架位置相比并不显著。在颈总动脉(CCA)远端支架植入术后,运动对紊乱血流的影响较小。这些发现突出表明,在不同条件下,运动引起的血流动力学变化有所不同。介入治疗患者的运动训练应在全面评估血管功能后进行。
期刊介绍:
Acta of Bioengineering and Biomechanics is a platform allowing presentation of investigations results, exchange of ideas and experiences among researchers with technical and medical background.
Papers published in Acta of Bioengineering and Biomechanics may cover a wide range of topics in biomechanics, including, but not limited to:
Tissue Biomechanics,
Orthopedic Biomechanics,
Biomaterials,
Sport Biomechanics.