{"title":"All laser direct writing process for temperature sensor based on graphene and silver.","authors":"Qi Li, Ruijie Bai, Lianbo Guo, Yang Gao","doi":"10.1007/s12200-024-00108-4","DOIUrl":null,"url":null,"abstract":"<p><p>A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1-5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30-120 μm and the resistivity of LIG can be regulated within the range of 0.031-67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as - 0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 μm, an electrical resistivity of 0.0001-100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"5"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00108-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A highly sensitive temperature sensing array is prepared by all laser direct writing (LDW) method, using laser induced silver (LIS) as electrodes and laser induced graphene (LIG) as temperature sensing layer. A finite element analysis (FEA) photothermal model incorporating a phase transition mechanism is developed to investigate the relationship between laser parameters and LIG properties, providing guidance for laser processing parameters selection with laser power of 1-5 W and laser scanning speed (greater than 50 mm/s). The deviation of simulation and experimental data for widths and thickness of LIG are less than 5% and 9%, respectively. The electrical properties and temperature responsiveness of LIG are also studied. By changing the laser process parameters, the thickness of the LIG ablation grooves can be in the range of 30-120 μm and the resistivity of LIG can be regulated within the range of 0.031-67.2 Ω·m. The percentage temperature coefficient of resistance (TCR) is calculated as - 0.58%/°C. Furthermore, the FEA photothermal model is studied through experiments and simulations data regarding LIS, and the average deviation between experiment and simulation is less than 5%. The LIS sensing samples have a thickness of about 14 μm, an electrical resistivity of 0.0001-100 Ω·m is insensitive to temperature and pressure stimuli. Moreover, for a LIS-LIG based temperature sensing array, a correction factor is introduced to compensate for the LIG temperature sensing being disturbed by pressure stimuli, the temperature measurement difference is decreased from 11.2 to 2.6 °C, indicating good accuracy for temperature measurement.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more