CD97 inhibits osteoclast differentiation via Rap1a/ERK pathway under compression.

IF 10.8 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE International Journal of Oral Science Pub Date : 2024-02-04 DOI:10.1038/s41368-023-00272-x
Wen Wang, Qian Wang, Shiying Sun, Pengfei Zhang, Yuyu Li, Weimin Lin, Qiwen Li, Xiao Zhang, Zhe Ma, Haiyan Lu
{"title":"CD97 inhibits osteoclast differentiation via Rap1a/ERK pathway under compression.","authors":"Wen Wang, Qian Wang, Shiying Sun, Pengfei Zhang, Yuyu Li, Weimin Lin, Qiwen Li, Xiao Zhang, Zhe Ma, Haiyan Lu","doi":"10.1038/s41368-023-00272-x","DOIUrl":null,"url":null,"abstract":"<p><p>Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing. However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation; while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion, our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"12"},"PeriodicalIF":10.8000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41368-023-00272-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing. However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation; while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion, our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD97 在压缩条件下通过 Rap1a/ERK 通路抑制破骨细胞的分化。
在正畸治疗过程中加速牙齿移动具有挑战性,其中压迫侧破骨细胞介导的骨吸收是限制速度的步骤。最近的研究表明,单核细胞/巨噬细胞表面的机械感受器,尤其是粘附G蛋白偶联受体(aGPCR),在力感应中发挥着重要作用。然而,它在调控破骨细胞分化中的作用仍不清楚。在此,我们通过单细胞分析发现,巨噬细胞中表达了一种新型机械敏感性 aGPCR--CD97。压缩会上调 CD97 的表达并抑制破骨细胞的分化;而敲除 CD97 则可部分挽救破骨细胞的分化。这表明CD97可能是破骨细胞分化过程中一个重要的机械敏感受体。RNA测序分析表明,Rap1a/ERK信号通路介导了CD97在压缩条件下对破骨细胞分化的影响。与此相一致,我们明确了给予 Rap1a 抑制剂 GGTI298 会增加破骨细胞的活性,从而加速牙齿移动。总之,我们的研究结果表明,在正畸压力下,CD97 通过 Rap1a/ERK 信号通路抑制破骨细胞分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Oral Science
International Journal of Oral Science DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
31.80
自引率
1.30%
发文量
53
审稿时长
>12 weeks
期刊介绍: The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to: Oral microbiology Oral and maxillofacial oncology Cariology Oral inflammation and infection Dental stem cells and regenerative medicine Craniofacial surgery Dental material Oral biomechanics Oral, dental, and maxillofacial genetic and developmental diseases Craniofacial bone research Craniofacial-related biomaterials Temporomandibular joint disorder and osteoarthritis The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.
期刊最新文献
Emerging roles of extracellular vesicles in oral and maxillofacial areas Oral submucous fibrosis: pathogenesis and therapeutic approaches Expert consensus on orthodontic treatment of protrusive facial deformities Strontium–Alix interaction enhances exosomal miRNA selectively loading in synovial MSCs for temporomandibular joint osteoarthritis treatment GenAI synthesis of histopathological images from Raman imaging for intraoperative tongue squamous cell carcinoma assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1