The presence of a positive deep surgical margin in tongue squamous cell carcinoma (TSCC) significantly elevates the risk of local recurrence. Therefore, a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection. In this study, we integrate Raman imaging technology with an artificial intelligence (AI) generative model, proposing an innovative approach for intraoperative margin status diagnosis. This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images, which are then transformed into hematoxylin-eosin (H&E)-stained histopathological images using an AI generative model for histopathological diagnosis. The generated H&E-stained images clearly illustrate the tissue’s pathological conditions. Independently reviewed by three pathologists, the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%. Notably, it outperforms current clinical practices, especially in TSCC with positive lymph node metastasis or moderately differentiated grades. This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations, promising a versatile diagnostic tool beyond TSCC.
{"title":"GenAI synthesis of histopathological images from Raman imaging for intraoperative tongue squamous cell carcinoma assessment","authors":"Bing Yan, Zhining Wen, Lili Xue, Tianyi Wang, Zhichao Liu, Wulin Long, Yi Li, Runyu Jing","doi":"10.1038/s41368-025-00346-y","DOIUrl":"https://doi.org/10.1038/s41368-025-00346-y","url":null,"abstract":"<p>The presence of a positive deep surgical margin in tongue squamous cell carcinoma (TSCC) significantly elevates the risk of local recurrence. Therefore, a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection. In this study, we integrate Raman imaging technology with an artificial intelligence (AI) generative model, proposing an innovative approach for intraoperative margin status diagnosis. This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images, which are then transformed into hematoxylin-eosin (H&E)-stained histopathological images using an AI generative model for histopathological diagnosis. The generated H&E-stained images clearly illustrate the tissue’s pathological conditions. Independently reviewed by three pathologists, the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%. Notably, it outperforms current clinical practices, especially in TSCC with positive lymph node metastasis or moderately differentiated grades. This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations, promising a versatile diagnostic tool beyond TSCC.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"45 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1038/s41368-024-00332-w
Zi Wang, Anish Saxena, Wenbo Yan, Silvia M. Uriarte, Rafael Siqueira, Xin Li
The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion. Neutrophils differentiate and mature in the bone marrow before entering the circulation; during an infection, they are recruited to infected tissues guided by the signal from chemokines and cytokines to eliminate invading pathogens. Neutrophils are crucial in maintaining a balanced response between host and microbes to prevent periodontal diseases in periodontal tissues. The impacts of aging on neutrophils’ chemotaxis, anti-microbial function, cell activation, and lifespan result in impaired neutrophil functions and excessive neutrophil activation, which could influence periodontitis course. We summarize the roles of neutrophils in periodontal diseases and the aging-related impacts on neutrophil functional responses. We also explore the underlying mechanisms that can contribute to periodontitis manifestation in aging. This review could help us better understand the pathogenesis of periodontitis, which could offer novel therapeutic targets for periodontitis.
{"title":"The impact of aging on neutrophil functions and the contribution to periodontitis","authors":"Zi Wang, Anish Saxena, Wenbo Yan, Silvia M. Uriarte, Rafael Siqueira, Xin Li","doi":"10.1038/s41368-024-00332-w","DOIUrl":"https://doi.org/10.1038/s41368-024-00332-w","url":null,"abstract":"<p>The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion. Neutrophils differentiate and mature in the bone marrow before entering the circulation; during an infection, they are recruited to infected tissues guided by the signal from chemokines and cytokines to eliminate invading pathogens. Neutrophils are crucial in maintaining a balanced response between host and microbes to prevent periodontal diseases in periodontal tissues. The impacts of aging on neutrophils’ chemotaxis, anti-microbial function, cell activation, and lifespan result in impaired neutrophil functions and excessive neutrophil activation, which could influence periodontitis course. We summarize the roles of neutrophils in periodontal diseases and the aging-related impacts on neutrophil functional responses. We also explore the underlying mechanisms that can contribute to periodontitis manifestation in aging. This review could help us better understand the pathogenesis of periodontitis, which could offer novel therapeutic targets for periodontitis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"49 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1038/s41368-024-00343-7
Ming Hao, Xingchen Li, Xinxin Zhang, Boqiang Tao, He Shi, Jianing Wu, Yuyang Li, Xiang Li, Shuangji Li, Han Wu, Jingcheng Xiang, Dongxu Wang, Weiwei Liu, Guoqing Wang
Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy. Nanoparticles with diagnostic and photothermal therapeutic properties may offer a new approach for the targeted therapy of TSCC. However, inadequate accumulation of photosensitizers at the tumor site diminishes the efficacy of photothermal therapy (PTT). This study modified gold nanodots (AuNDs) with the TSCC-targeting peptide HN-1 to improve the selectivity and therapeutic effects of PTT. The Au-HN-1 nanosystem effectively targeted the TSCC cells and was rapidly delivered to the tumor tissues compared to the AuNDs. The enhanced accumulation of photosensitizing agents at tumor sites achieved significant PTT effects in a mouse model of TSCC. Moreover, owing to its stable long-term fluorescence and high X-ray attenuation coefficient, the Au-HN-1 nanosystem can be used for fluorescence and computed tomography imaging of TSCC, rendering it useful for early tumor detection and accurate delineation of surgical margins. In conclusion, Au-HN-1 represents a promising nanomedicine for imaging-based diagnosis and targeted PTT of TSCC.
{"title":"Tongue squamous cell carcinoma-targeting Au-HN-1 nanosystem for CT imaging and photothermal therapy","authors":"Ming Hao, Xingchen Li, Xinxin Zhang, Boqiang Tao, He Shi, Jianing Wu, Yuyang Li, Xiang Li, Shuangji Li, Han Wu, Jingcheng Xiang, Dongxu Wang, Weiwei Liu, Guoqing Wang","doi":"10.1038/s41368-024-00343-7","DOIUrl":"https://doi.org/10.1038/s41368-024-00343-7","url":null,"abstract":"<p>Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy. Nanoparticles with diagnostic and photothermal therapeutic properties may offer a new approach for the targeted therapy of TSCC. However, inadequate accumulation of photosensitizers at the tumor site diminishes the efficacy of photothermal therapy (PTT). This study modified gold nanodots (AuNDs) with the TSCC-targeting peptide HN-1 to improve the selectivity and therapeutic effects of PTT. The Au-HN-1 nanosystem effectively targeted the TSCC cells and was rapidly delivered to the tumor tissues compared to the AuNDs. The enhanced accumulation of photosensitizing agents at tumor sites achieved significant PTT effects in a mouse model of TSCC. Moreover, owing to its stable long-term fluorescence and high X-ray attenuation coefficient, the Au-HN-1 nanosystem can be used for fluorescence and computed tomography imaging of TSCC, rendering it useful for early tumor detection and accurate delineation of surgical margins. In conclusion, Au-HN-1 represents a promising nanomedicine for imaging-based diagnosis and targeted PTT of TSCC.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"43 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1038/s41368-024-00340-w
Yu Wang, Shanshan Jin, Yaru Guo, Yilong Lu, Xuliang Deng
Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY). MMS-CY could adhere to the surface of alveolar bone, then promote the migration capacity of PDLSCs and thus recruit them to inflammatory periodontal tissues. Furthermore, MMS-CY rescued the impaired osteogenesis and ligament-forming capacity of PDLSCs, which were suppressed by the inflammation stimulus. Moreover, MMS-CY also displayed the excellent inhibitory effect on the osteoclastic activity. Mechanistically, MMS-CY inhibited the premature senescence induced by the inflammation stimulus through the nuclear factor erythroid 2-related factor (NRF2) pathway and reducing the DNA injury. Utilizing in vivo rat periodontitis model, MMS-CY was demonstrated to enhance the periodontal bone regeneration by improving osteogenesis and inhibiting the osteoclastic activity. Altogether, our study indicated that the multi-pronged approach is promising to promote the periodontal bone regeneration in periodontitis condition by reducing the inflammation-induced stem cell senescence and maintaining bone homeostasis.
{"title":"Adhesive and injectable hydrogel microspheres for NRF2-mediated periodontal bone regeneration.","authors":"Yu Wang, Shanshan Jin, Yaru Guo, Yilong Lu, Xuliang Deng","doi":"10.1038/s41368-024-00340-w","DOIUrl":"10.1038/s41368-024-00340-w","url":null,"abstract":"<p><p>Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY). MMS-CY could adhere to the surface of alveolar bone, then promote the migration capacity of PDLSCs and thus recruit them to inflammatory periodontal tissues. Furthermore, MMS-CY rescued the impaired osteogenesis and ligament-forming capacity of PDLSCs, which were suppressed by the inflammation stimulus. Moreover, MMS-CY also displayed the excellent inhibitory effect on the osteoclastic activity. Mechanistically, MMS-CY inhibited the premature senescence induced by the inflammation stimulus through the nuclear factor erythroid 2-related factor (NRF2) pathway and reducing the DNA injury. Utilizing in vivo rat periodontitis model, MMS-CY was demonstrated to enhance the periodontal bone regeneration by improving osteogenesis and inhibiting the osteoclastic activity. Altogether, our study indicated that the multi-pronged approach is promising to promote the periodontal bone regeneration in periodontitis condition by reducing the inflammation-induced stem cell senescence and maintaining bone homeostasis.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"17 1","pages":"7"},"PeriodicalIF":10.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient’s general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.
{"title":"Expert consensus on pulpotomy in the management of mature permanent teeth with pulpitis","authors":"Lu Zhang, Chen Lin, Zhuo Chen, Lin Yue, Qing Yu, Benxiang Hou, Junqi Ling, Jingping Liang, Xi Wei, Wenxia Chen, Lihong Qiu, Jiyao Li, Yumei Niu, Zhengmei Lin, Lei Cheng, Wenxi He, Xiaoyan Wang, Dingming Huang, Zhengwei Huang, Weidong Niu, Qi Zhang, Chen Zhang, Deqin Yang, Jinhua Yu, Jin Zhao, Yihuai Pan, Jingzhi Ma, Shuli Deng, Xiaoli Xie, Xiuping Meng, Jian Yang, Xuedong Zhou, Zhi Chen","doi":"10.1038/s41368-024-00333-9","DOIUrl":"https://doi.org/10.1038/s41368-024-00333-9","url":null,"abstract":"<p>Pulpotomy, which belongs to vital pulp therapy, has become a strategy for managing pulpitis in recent decades. This minimally invasive treatment reflects the recognition of preserving healthy dental pulp and optimizing long-term patient-centered outcomes. Pulpotomy is categorized into partial pulpotomy (PP), the removal of a partial segment of the coronal pulp tissue, and full pulpotomy (FP), the removal of whole coronal pulp, which is followed by applying the biomaterials onto the remaining pulp tissue and ultimately restoring the tooth. Procedural decisions for the amount of pulp tissue removal or retention depend on the diagnostic of pulp vitality, the overall treatment plan, the patient’s general health status, and pulp inflammation reassessment during operation. This statement represents the consensus of an expert committee convened by the Society of Cariology and Endodontics, Chinese Stomatological Association. It addresses the current evidence to support the application of pulpotomy as a potential alternative to root canal treatment (RCT) on mature permanent teeth with pulpitis from a biological basis, the development of capping biomaterial, and the diagnostic considerations to evidence-based medicine. This expert statement intends to provide a clinical protocol of pulpotomy, which facilitates practitioners in choosing the optimal procedure and increasing their confidence in this rapidly evolving field.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"21 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.
{"title":"Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain","authors":"Zhangyu Ma, Qianqian Wan, Wenpin Qin, Wen Qin, Janfei Yan, Yina Zhu, Yuzhu Wang, Yuxuan Ma, Meichen Wan, Xiaoxiao Han, Haoyan Zhao, Yuxuan Hou, Franklin R. Tay, Lina Niu, Kai Jiao","doi":"10.1038/s41368-024-00336-6","DOIUrl":"https://doi.org/10.1038/s41368-024-00336-6","url":null,"abstract":"<p>Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"35 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-02DOI: 10.1038/s41368-024-00326-8
Camila Paz Muñoz-Grez, Mabel Angélica Vidal, Tamara Beatriz Rojas, Luciano Esteban Ferrada, Felipe Andrés Zuñiga, Agustin Andrés Vera, Sergio Andrés Sanhueza, Romina Andrea Quiroga, Camilo Daniel Cabrera, Barbara Evelyn Antilef, Ricardo Andrés Cartes, Milovan Paolo Acevedo, Marco Andrés Fraga, Pedro Felipe Alarcón-Zapata, Mauricio Alejandro Hernández, Alexis Marcelo Salas-Burgos, Francisco Tapia-Belmonte, Milly Loreto Yáñez, Erick Marcelo Riquelme, Wilfredo Alejandro González, Cesar Andrés Rivera, Angel Alejandro Oñate, Liliana Ivonne Lamperti, Estefanía Nova-Lamperti
Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from Fusobacterium nucleatum (F. nucleatum) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that F. nucleatum modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that F. nucleatum and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, F. nucleatum promotes pro-tumoral mechanism in oral cancer.
{"title":"Host-microbe computational proteomic landscape in oral cancer revealed key functional and metabolic pathways between Fusobacterium nucleatum and cancer progression","authors":"Camila Paz Muñoz-Grez, Mabel Angélica Vidal, Tamara Beatriz Rojas, Luciano Esteban Ferrada, Felipe Andrés Zuñiga, Agustin Andrés Vera, Sergio Andrés Sanhueza, Romina Andrea Quiroga, Camilo Daniel Cabrera, Barbara Evelyn Antilef, Ricardo Andrés Cartes, Milovan Paolo Acevedo, Marco Andrés Fraga, Pedro Felipe Alarcón-Zapata, Mauricio Alejandro Hernández, Alexis Marcelo Salas-Burgos, Francisco Tapia-Belmonte, Milly Loreto Yáñez, Erick Marcelo Riquelme, Wilfredo Alejandro González, Cesar Andrés Rivera, Angel Alejandro Oñate, Liliana Ivonne Lamperti, Estefanía Nova-Lamperti","doi":"10.1038/s41368-024-00326-8","DOIUrl":"https://doi.org/10.1038/s41368-024-00326-8","url":null,"abstract":"<p>Oral squamous cell carcinoma (OSCC) is the most common manifestation of oral cancer. It has been proposed that periodontal pathogens contribute to OSCC progression, mainly by their virulence factors. However, the main periodontal pathogen and its mechanism to modulate OSCC cells remains not fully understood. In this study we investigate the main host-pathogen pathways in OSCC by computational proteomics and the mechanism behind cancer progression by the oral microbiome. The main host-pathogen pathways were analyzed in the secretome of biopsies from patients with OSCC and healthy controls by mass spectrometry. Then, functional assays were performed to evaluate the host-pathogen pathways highlighted in oral cancer. Host proteins associated with LPS response, cell migration/adhesion, and metabolism of amino acids were significantly upregulated in the human cancer proteome, whereas the complement cascade was downregulated in malignant samples. Then, the microbiome analysis revealed large number and variety of peptides from <i>Fusobacterium nucleatum</i> (<i>F. nucleatum</i>) in OSCC samples, from which several enzymes from the L-glutamate degradation pathway were found, indicating that L-glutamate from cancer cells is used as an energy source, and catabolized into butyrate by the bacteria. In fact, we observed that <i>F. nucleatum</i> modulates the cystine/glutamate antiporter in an OSCC cell line by increasing SLC7A11 expression, promoting L-glutamate efflux and favoring bacterial infection. Finally, our results showed that <i>F. nucleatum</i> and its metabolic derivates promote tumor spheroids growth, spheroids-derived cell detachment, epithelial-mesenchymal transition and Galectin-9 upregulation. Altogether, <i>F. nucleatum</i> promotes pro-tumoral mechanism in oral cancer.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"10 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.
{"title":"Expert consensus on apical microsurgery","authors":"Hanguo Wang, Xin Xu, Zhuan Bian, Jingping Liang, Zhi Chen, Benxiang Hou, Lihong Qiu, Wenxia Chen, Xi Wei, Kaijin Hu, Qintao Wang, Zuhua Wang, Jiyao Li, Dingming Huang, Xiaoyan Wang, Zhengwei Huang, Liuyan Meng, Chen Zhang, Fangfang Xie, Di Yang, Jinhua Yu, Jin Zhao, Yihuai Pan, Shuang Pan, Deqin Yang, Weidong Niu, Qi Zhang, Shuli Deng, Jingzhi Ma, Xiuping Meng, Jian Yang, Jiayuan Wu, Yi Du, Junqi Ling, Lin Yue, Xuedong Zhou, Qing Yu","doi":"10.1038/s41368-024-00334-8","DOIUrl":"https://doi.org/10.1038/s41368-024-00334-8","url":null,"abstract":"<p>Apical microsurgery is accurate and minimally invasive, produces few complications, and has a success rate of more than 90%. However, due to the lack of awareness and understanding of apical microsurgery by dental general practitioners and even endodontists, many clinical problems remain to be overcome. The consensus has gathered well-known domestic experts to hold a series of special discussions and reached the consensus. This document specifies the indications, contraindications, preoperative preparations, operational procedures, complication prevention measures, and efficacy evaluation of apical microsurgery and is applicable to dentists who perform apical microsurgery after systematic training.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"68 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1038/s41368-024-00328-6
Lingxiao Wang, Haoqing Yang, Chen Zhang, Yue Zhang, Yilin He, Yang Liu, Pan Ma, Jun Li, Zhipeng Fan
Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.
{"title":"A blood glucose fluctuation-responsive delivery system promotes bone regeneration and the repair function of Smpd3-reprogrammed BMSC-derived exosomes","authors":"Lingxiao Wang, Haoqing Yang, Chen Zhang, Yue Zhang, Yilin He, Yang Liu, Pan Ma, Jun Li, Zhipeng Fan","doi":"10.1038/s41368-024-00328-6","DOIUrl":"https://doi.org/10.1038/s41368-024-00328-6","url":null,"abstract":"<p>Blood glucose fluctuation leads to poor bone defect repair in patients with type 2 diabetes (T2DM). Strategies to safely and efficiently improve the bone regeneration disorder caused by blood glucose fluctuation are still a challenge. Neutral sphingophospholipase 2 (Smpd3) is downregulated in jawbone-derived bone marrow mesenchymal stem cells (BMSCs) from T2DM patients. Here, we investigated the effect of Smpd3 on the osteogenic differentiation of BMSCs and utilized exosomes from stem cells overexpressing Smpd3 as the main treatment based on the glucose responsiveness of phenylboronic acid-based polyvinyl alcohol crosslinkers and the protease degradability of gelatin nanoparticles. The combined loading of Smpd3-overexpressing stem cell-derived exosomes (Exos-Smpd3) and nanosilver ions (Ns) to construct a hydrogel delivery system (Exos-Smpd3@Ns) promoted osteogenesis and differentiation of BMSCs in a glucose-fluctuating environment, ectopic osteogenesis of BMSCs in a glucose-fluctuating environment and jawbone regeneration of diabetic dogs in vitro. Mechanistically, Smpd3 promoted the osteogenesis and differentiation of jawbone-derived BMSCs by activating autophagy in the jawbone and inhibiting macrophage polarization and oxidative stress caused by blood glucose fluctuations. These results reveal the role and mechanism of Smpd3 and the Smpd3 overexpression exosome delivery system in promoting BMSC function and bone regeneration under blood glucose fluctuations, providing a theoretical basis and candidate methods for the treatment of bone defects in T2DM patients.</p>","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"37 1","pages":""},"PeriodicalIF":14.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142756351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1038/s41368-024-00330-y
Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E Schwab, Thimios A Mitsiadis
{"title":"Correction: An unexpected role of Nogo-A as regulator of tooth enamel formation.","authors":"Pierfrancesco Pagella, Chai Foong Lai, Laurence Pirenne, Claudio Cantù, Martin E Schwab, Thimios A Mitsiadis","doi":"10.1038/s41368-024-00330-y","DOIUrl":"10.1038/s41368-024-00330-y","url":null,"abstract":"","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":"16 1","pages":"64"},"PeriodicalIF":12.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}