Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals.

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of Cardiovascular Magnetic Resonance Pub Date : 2024-06-01 Epub Date: 2024-02-02 DOI:10.1016/j.jocmr.2024.101006
Mariana B L Falcão, Adèle L C Mackowiak, Giulia M C Rossi, Milan Prša, Estelle Tenisch, Simone Rumac, Mario Bacher, Tobias Rutz, Ruud B van Heeswijk, Peter Speier, Michael Markl, Jessica A M Bastiaansen, Matthias Stuber, Christopher W Roy
{"title":"Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals.","authors":"Mariana B L Falcão, Adèle L C Mackowiak, Giulia M C Rossi, Milan Prša, Estelle Tenisch, Simone Rumac, Mario Bacher, Tobias Rutz, Ruud B van Heeswijk, Peter Speier, Michael Markl, Jessica A M Bastiaansen, Matthias Stuber, Christopher W Roy","doi":"10.1016/j.jocmr.2024.101006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images.</p><p><strong>Methods: </strong>Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation.</p><p><strong>Results: </strong>Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r<sup>2</sup> = 0.83) and peak flow (r<sup>2</sup> = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r<sup>2</sup> = 0.79) and peak flow (r<sup>2</sup> = 0.76).</p><p><strong>Conclusion: </strong>The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101006"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2024.101006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images.

Methods: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation.

Results: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76).

Conclusion: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生理信号的邻近采集同步(SyNAPS)技术,将自由运行的四维解剖和血流磁共振成像与原生对比度相结合。
背景:四维血流磁共振成像(4D flow MRI)通常需要注入钆或氧化铁基造影剂来改善血管轮廓。在这项工作中,我们开发了一种新技术,用于获取和重建四维血流数据,该技术具有出色的血管动态可视化效果,但无需注入造影剂。通过生理信号同步邻近采集(Synchronization of Neighboring Acquisitions by Physiological Signals,SyNAPS)使用先导音(Pilot Tone,PT)导航,回溯性地同步重建两个自由运行的三维径向采集,以创建共同注册的解剖和血流图像:使用一个自由运行的快速间断稳态(FISS)序列和一个自由运行的相位对比 MRI(PC-MRI)序列,对 13 名志愿者和两名马凡综合征患者进行了无造影剂扫描。记录了两个序列的 PT 信号,用于回溯呼吸运动校正和心脏分档。分别从 FISS 和 PC-MRI 重建的幅值和相位图像同步生成 SyNAPS 4D 血流数据集。升主动脉(AAo)和降主动脉(DAo)的常规二维血流数据被采集作为参考。血流与心肌对比度、动态血管面积、净容积和峰值血流用于比较 SyNAPS 4D 血流与 Native 4D 血流(不含 FISS 信息)和 2D 血流。由两名盲法专家对每个数据集进行血管划分的可行性评分,评分标准为 0-4:结果:SyNAPS 4D 血流幅度图像的血流与心肌对比度(1.5±0.3)明显高于 Native 4D 血流(0.7±0.1,p2=0.83),峰值血流(r2=0.87)大于 Native 4D 血流与 2D 血流测量净容积(r2=0.79)和峰值血流(r2=0.76)之间的相关性:SyNAPS用于联合全心解剖和血流磁共振成像的可行性和实用性已得到证实,无需心电图门控、呼吸导航器或造影剂。使用 SyNAPS 可以利用高对比度解剖成像序列来改进 4D 血流测量,而在没有造影剂的情况下,4D 血流测量往往会出现血管边界划分不清的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
期刊最新文献
Automatic Vessel Segmentation and Reformation of Non-contrast Coronary Magnetic Resonance Angiography Using Transfer Learning-based 3D U-net with Attention Mechanism. Absence of cardiac impairment in patients after SARS-CoV-2 infection: a long-term follow-up study. Simultaneous Multislice Cardiac Multimapping based on Locally Low-Rank and Sparsity Constraints. Joint suppression of cardiac bSSFP cine banding and flow artifacts using twofold phase-cycling and a dual-encoder neural network. Non-Invasively Measured Myocardial Torsional Modulus: Comparison to Invasive Evaluation of Diastolic Function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1