Yu-Xiang Cai, Jun-Xian Chen, Hong-Mei Dong, Zai-Chang Yang
{"title":"19 Schiff bases as antimycobacterial agents: synthesis, molecular docking and a plausible mechanism of action.","authors":"Yu-Xiang Cai, Jun-Xian Chen, Hong-Mei Dong, Zai-Chang Yang","doi":"10.4155/fmc-2023-0305","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> To discover novel anti-<i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) drugs, 19 compounds were synthesized; their anti-<i>Mtb</i> effects were evaluated and mechanisms of action were preliminarily explored. <b>Materials & methods:</b> The compounds were synthesized and their anti-<i>Mtb</i> activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. <b>Results:</b> 19 compounds inhibited <i>Mtb</i> growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds <b>1</b>-<b>17</b> showed inhibition of <i>Mtb</i> KatG enzyme. Compound <b>19</b>, the most potent, might be an inhibitor of Pks13 polyketide synthase. <b>Conclusion:</b> This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (<b>19</b>) is a potential anti-<i>Mtb</i> lead compound with a novel mechanism of action.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"453-467"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4155/fmc-2023-0305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To discover novel anti-Mycobacterium tuberculosis (Mtb) drugs, 19 compounds were synthesized; their anti-Mtb effects were evaluated and mechanisms of action were preliminarily explored. Materials & methods: The compounds were synthesized and their anti-Mtb activity was elucidated using resazurin microtiter assays. The plausible target of the potential compound was investigated by microimaging techniques, gas chromatography-mass spectrometry analysis and molecular docking. Results: 19 compounds inhibited Mtb growth with minimum inhibitory concentrations ranging from 1 to 32 μg/ml. Compounds 1-17 showed inhibition of Mtb KatG enzyme. Compound 19, the most potent, might be an inhibitor of Pks13 polyketide synthase. Conclusion: This study suggests that 2-((6-fluoropyridin-3-yl)methylene) hydrazine-1-carbothioamide (19) is a potential anti-Mtb lead compound with a novel mechanism of action.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.