Effect of the cathode surface temperature on the cathode fall layer parameters: experiment and simulation

Leanid Simonchik, Mikalai Tomkavich, Gubad Islamov, E. Eylenceoglu, Ismail Rafatov
{"title":"Effect of the cathode surface temperature on the cathode fall layer parameters: experiment and simulation","authors":"Leanid Simonchik, Mikalai Tomkavich, Gubad Islamov, E. Eylenceoglu, Ismail Rafatov","doi":"10.1088/1361-6595/ad2580","DOIUrl":null,"url":null,"abstract":"\n Combined experimental and numerical studies reveal a significant effect of the cathode temperature on the basic parameters (such as the electric field profile, thickness of the cathode fall layer, current density, and gas temperature) of the cathode fall of the self-sustained normal DC atmospheric pressure glow discharge (APGD) in helium. Numerical models are spatially one- and two-dimensional and based on drift-diffusion theory of gas discharges. It was observed that heating of the cathode, resulting from a flow of the discharge current in APGD with a constricted positive column, leads to an increase of the interelectrode voltage if the cathode is not cooled and its temperature increases. With additional heating of the cathode by an external heat source, the interelectrode voltage tends to decrease. Radially inhomogeneous profiles of the reduced electric field on the uncooled cathode surface were measured. Simulation results exhibit reasonably good agreement with experiment for APGDs with cooled and uncooled cathodes.","PeriodicalId":508056,"journal":{"name":"Plasma Sources Science and Technology","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad2580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Combined experimental and numerical studies reveal a significant effect of the cathode temperature on the basic parameters (such as the electric field profile, thickness of the cathode fall layer, current density, and gas temperature) of the cathode fall of the self-sustained normal DC atmospheric pressure glow discharge (APGD) in helium. Numerical models are spatially one- and two-dimensional and based on drift-diffusion theory of gas discharges. It was observed that heating of the cathode, resulting from a flow of the discharge current in APGD with a constricted positive column, leads to an increase of the interelectrode voltage if the cathode is not cooled and its temperature increases. With additional heating of the cathode by an external heat source, the interelectrode voltage tends to decrease. Radially inhomogeneous profiles of the reduced electric field on the uncooled cathode surface were measured. Simulation results exhibit reasonably good agreement with experiment for APGDs with cooled and uncooled cathodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阴极表面温度对阴极下落层参数的影响:实验与模拟
结合实验和数值研究发现,阴极温度对氦气中自持续正常直流大气压辉光放电(APGD)阴极落差的基本参数(如电场剖面、阴极落差层厚度、电流密度和气体温度)有显著影响。数值模型为空间一维和二维模型,基于气体放电的漂移扩散理论。研究发现,如果阴极未被冷却且温度升高,在正极柱收缩的 APGD 中,放电电流的流动会导致阴极加热,从而导致电极间电压升高。通过外部热源对阴极进行额外加热后,电极间电压趋于降低。测量了未冷却阴极表面上的还原电场的径向不均匀剖面。对于具有冷却和非冷却阴极的 APGD,模拟结果与实验结果具有相当好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generation of high-density plasma via transparent electrode in capacitively coupled plasma Variations of plasma potential in RF discharges with DC-grounded electrode In situ measurement of electron emission yield at Si and SiO2 surfaces exposed to Ar/CF4 plasmas Study of atoms and multiply charged ions features in the nanosecond laser produced Mo plasma in vacuum using optical emission spectroscopy and time-of-flight electrostatic energy analyzer Ozone production by an He+O2 radio-frequency atmospheric pressure plasma jet driven by tailored voltage waveforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1