An Analysis of the Minimum Pressure Coefficient Criterion Applied to the Axial-flow Pump Design – A Case Study for a Circulating Water Channel

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-02-01 DOI:10.47176/jafm.17.02.2095
R. V. C. Ramalho, A. L. A. Mesquita, N. M. Filho
{"title":"An Analysis of the Minimum Pressure Coefficient Criterion Applied to the Axial-flow Pump Design – A Case Study for a Circulating Water Channel","authors":"R. V. C. Ramalho, A. L. A. Mesquita, N. M. Filho","doi":"10.47176/jafm.17.02.2095","DOIUrl":null,"url":null,"abstract":"An analysis of the minimum pressure coefficient on the suction side of the axial-flow pump blades is presented as a design criterion. A Matlab code is used to improve the computer aided design process efficiency and quality. X-Foil software determines the blade profiles' lift and drag coefficients, and a computational fluid dynamics model is applied to certify the pump efficiency. The model is validated from the available experimental data in the literature. The finite volume method is used through the commercial software Ansys CFX, in order to solve the model equations. A case study is presented to design the axial-flow pump for a large circulating water channel that will be used to test ships, naval structures, and hydrokinetic turbines. Particular attention is given to the pump cavitation conditions. The model evaluates the minimum pressure coefficient criterion and pressure coefficient distribution on the blade span, showing satisfactory performance for the pump at the design point and at variable speed.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.02.2095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

An analysis of the minimum pressure coefficient on the suction side of the axial-flow pump blades is presented as a design criterion. A Matlab code is used to improve the computer aided design process efficiency and quality. X-Foil software determines the blade profiles' lift and drag coefficients, and a computational fluid dynamics model is applied to certify the pump efficiency. The model is validated from the available experimental data in the literature. The finite volume method is used through the commercial software Ansys CFX, in order to solve the model equations. A case study is presented to design the axial-flow pump for a large circulating water channel that will be used to test ships, naval structures, and hydrokinetic turbines. Particular attention is given to the pump cavitation conditions. The model evaluates the minimum pressure coefficient criterion and pressure coefficient distribution on the blade span, showing satisfactory performance for the pump at the design point and at variable speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轴流泵设计中应用的最小压力系数标准分析 - 循环水渠案例研究
将轴流泵叶片吸入侧最小压力系数作为设计标准进行分析。Matlab 代码用于提高计算机辅助设计过程的效率和质量。X-Foil 软件可确定叶片轮廓的升力和阻力系数,并应用计算流体动力学模型来验证泵的效率。该模型通过文献中可用的实验数据进行了验证。通过商业软件 Ansys CFX 使用有限体积法求解模型方程。案例研究介绍了如何为大型循环水道设计轴流泵,该水道将用于测试船舶、海军结构和水动力涡轮机。特别关注了泵的气蚀条件。该模型评估了最小压力系数标准和叶片跨度上的压力系数分布,结果表明泵在设计点和变速时的性能令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1