Method for anti-collision path planning using velocity obstacle and A* algorithms for maritime autonomous surface ship

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE International Journal of Naval Architecture and Ocean Engineering Pub Date : 2024-01-01 DOI:10.1016/j.ijnaoe.2024.100586
Donghun Yu , Myung-Il Roh
{"title":"Method for anti-collision path planning using velocity obstacle and A* algorithms for maritime autonomous surface ship","authors":"Donghun Yu ,&nbsp;Myung-Il Roh","doi":"10.1016/j.ijnaoe.2024.100586","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing size of ships and increasing demand for autonomous navigation, ensuring ship safety is not the only concern; the efficiency of anti-collision technology should be enhanced. In this paper, we propose a novel hybrid anti-collision path planning method called VO-PATH. This method combines the advantages of the Velocity Obstacle (VO) algorithm, which guarantees anti-collision for autonomous ships, with the A* algorithm, which is known for its capacity to optimize paths. To assess the effectiveness of the proposed method, we conducted anti-collision simulations for both single- and multiple-encounter scenarios, all of which adhered to COLREGs-defined avoidance obligations. Furthermore, we evaluated the performance of the proposed method by comparing its results with those obtained using conventional VO and A* algorithms. The findings indicate that the proposed method is superior to the A* algorithm in terms of steering away from collisions in complex multiple-encounter scenarios. Additionally, the proposed method significantly reduces the distance traveled by the ship to avoid potential collisions, with improvements of up to approximately 6.6% compared with alternative algorithms. We expect that this reduction will enhance safety and provide a more efficient anti-collision path.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100586"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000050/pdfft?md5=c4b71b1ddb3c2008785dc47e96c71e60&pid=1-s2.0-S2092678224000050-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000050","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing size of ships and increasing demand for autonomous navigation, ensuring ship safety is not the only concern; the efficiency of anti-collision technology should be enhanced. In this paper, we propose a novel hybrid anti-collision path planning method called VO-PATH. This method combines the advantages of the Velocity Obstacle (VO) algorithm, which guarantees anti-collision for autonomous ships, with the A* algorithm, which is known for its capacity to optimize paths. To assess the effectiveness of the proposed method, we conducted anti-collision simulations for both single- and multiple-encounter scenarios, all of which adhered to COLREGs-defined avoidance obligations. Furthermore, we evaluated the performance of the proposed method by comparing its results with those obtained using conventional VO and A* algorithms. The findings indicate that the proposed method is superior to the A* algorithm in terms of steering away from collisions in complex multiple-encounter scenarios. Additionally, the proposed method significantly reduces the distance traveled by the ship to avoid potential collisions, with improvements of up to approximately 6.6% compared with alternative algorithms. We expect that this reduction will enhance safety and provide a more efficient anti-collision path.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用速度障碍和 A* 算法进行海上自主水面舰艇防碰撞路径规划的方法
随着船舶规模的不断扩大和自主导航需求的不断增加,确保船舶安全已不是唯一的问题,防碰撞技术的效率也应得到提高。本文提出了一种名为 VO-PATH 的新型混合防碰撞路径规划方法。该方法结合了速度障碍(VO)算法和 A* 算法的优点,前者可确保自主航行的船只防碰撞,后者则以路径优化能力著称。为了评估所提方法的有效性,我们对单次和多次相遇场景进行了防碰撞模拟,所有这些场景都遵守了 COLREGs 规定的避让义务。此外,我们还通过比较拟议方法与传统 VO 和 A* 算法的结果,评估了拟议方法的性能。结果表明,在复杂的多重相遇场景中,拟议方法在避免碰撞方面优于 A* 算法。此外,与其他算法相比,所提出的方法大大减少了船舶为避免潜在碰撞而行驶的距离,改进幅度高达约 6.6%。我们希望这种减少能提高安全性,并提供更有效的防撞路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
期刊最新文献
A fundamental study on structural strength assessment of U-bolts for expanded application to shipbuilding and offshore piping systems A numerical study on the feasibility of predicting the resistance of a full-scale ship using a virtual fluid A novel formula for predicting the ultimate compressive strength of the cylindrically curved plates A numerical study of added resistance performance and hydrodynamics of KCS hull in oblique regular waves and estimation of resistance in short-crested irregular waves through spectral method Evaluation of subgrid scale models in turbulent large eddy simulations of pumpjet propulsor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1