Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-02-03 DOI:10.1016/j.jcomc.2024.100440
Monzure-Khoda Kazi , E. Mahdi
{"title":"Crashworthiness optimization of composite hexagonal ring system using random forest classification and artificial neural network","authors":"Monzure-Khoda Kazi ,&nbsp;E. Mahdi","doi":"10.1016/j.jcomc.2024.100440","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to enhance the safety level and crash resiliency of targeted woven roving glass/epoxy composite material for various industry 4.0 applications. Advanced machine learning algorithms are used in this study to figure out the complicated relationship between the crashworthiness parameters of the hexagonal composite ring specimens under lateral compressive, energy absorption, and failure modes. These algorithms include random forest (RF) classification and artificial neural networks (ANN). The ultimate target is to develop a robust multi-modal machine learning method to predict the optimum geometry (i.e., hexagonal ring angle) and suitable in-plane crushing arrangements of the hexagonal ring system for targeted crashworthiness parameters. The results demonstrate that the suggested RF-ANN-based technique can predict the optimal composite design with high accuracy (precision, recall, and f1-score for test and train dataset were 1). Furthermore, the confusion matrix validates the random forest classification model's accuracy. At the same time, the mean square error value serves as the loss function for the ANN model (i.e., the loss function values were 2.84 × 10<sup>−7</sup> and 6.40 × 10<sup>−7,</sup> respectively, for X1 and X2 loading conditions at 45° angle). Furthermore, the developed models can predict crashworthiness parameters for any hexagonal ring angle within the range of the trained dataset, requiring no additional experimental effort.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"13 ","pages":"Article 100440"},"PeriodicalIF":5.3000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000112/pdfft?md5=c7d60980ba155747803ffedd733cd936&pid=1-s2.0-S2666682024000112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to enhance the safety level and crash resiliency of targeted woven roving glass/epoxy composite material for various industry 4.0 applications. Advanced machine learning algorithms are used in this study to figure out the complicated relationship between the crashworthiness parameters of the hexagonal composite ring specimens under lateral compressive, energy absorption, and failure modes. These algorithms include random forest (RF) classification and artificial neural networks (ANN). The ultimate target is to develop a robust multi-modal machine learning method to predict the optimum geometry (i.e., hexagonal ring angle) and suitable in-plane crushing arrangements of the hexagonal ring system for targeted crashworthiness parameters. The results demonstrate that the suggested RF-ANN-based technique can predict the optimal composite design with high accuracy (precision, recall, and f1-score for test and train dataset were 1). Furthermore, the confusion matrix validates the random forest classification model's accuracy. At the same time, the mean square error value serves as the loss function for the ANN model (i.e., the loss function values were 2.84 × 10−7 and 6.40 × 10−7, respectively, for X1 and X2 loading conditions at 45° angle). Furthermore, the developed models can predict crashworthiness parameters for any hexagonal ring angle within the range of the trained dataset, requiring no additional experimental effort.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用随机森林分类和人工神经网络优化复合材料六角环系统的耐撞性
本研究旨在提高目标编织无捻玻璃/环氧复合材料的安全等级和碰撞回弹性,使其适用于各种工业 4.0 应用。本研究采用了先进的机器学习算法,以找出六边形复合材料环试样在横向压缩、能量吸收和失效模式下的耐撞性参数之间的复杂关系。这些算法包括随机森林(RF)分类和人工神经网络(ANN)。最终目标是开发出一种稳健的多模式机器学习方法,以预测六角环系统的最佳几何形状(即六角环角度)和合适的面内挤压安排,从而达到目标耐撞性参数。结果表明,所建议的基于 RF-ANN 的技术可以高精度预测最佳复合材料设计(测试和训练数据集的精度、召回率和 f1 分数均为 1)。此外,混淆矩阵验证了随机森林分类模型的准确性。同时,均方误差值可作为 ANN 模型的损失函数(即在 45o 角的 X1 和 X2 加载条件下,损失函数值分别为 2.84 × 10-7 和 6.40 × 10-7)。此外,所开发的模型可以预测训练数据集范围内任何六角环角度的耐撞性参数,无需额外的实验工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1