{"title":"Invasion of Pieris mannii butterflies across Central Europe facilitated by urbanization","authors":"","doi":"10.1007/s11252-024-01507-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Urbanization progresses world-wide and the frequency of biological invasions increases. Understanding to what extent urban environments facilitate biological invasions and how this affects ecosystems within and outside urbanized areas thus becomes crucial. We here examine the role of urban environments in the invasion of the butterfly <em>Pieris mannii</em> that expanded across Central Europe within the last two decades. Using standardized butterfly captures at paired urban and (semi)natural field sites within the invaded range in Switzerland, we demonstrate that <em>P. mannii</em> is strongly associated with cities and towns. At least in some urban localities, this species is now the most common butterfly, and densities tend to be particularly high where urban areas are large. Because urban habitats commonly provide non-native host plants and perhaps also the physical structure and microclimate suitable to this butterfly, urbanization has clearly promoted the species’ rapid invasion. Studying phenology over an entire season, we further infer that <em>P. mannii</em> has up to six generations per year, which may allow the species to adjust its life cycle to changing season length during northward expansion. Overall, our study demonstrates how preadaptation to urbanized environments in a relatively specialized insect increases urban biodiversity on a large geographic scale.</p>","PeriodicalId":48869,"journal":{"name":"Urban Ecosystems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Ecosystems","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11252-024-01507-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Urbanization progresses world-wide and the frequency of biological invasions increases. Understanding to what extent urban environments facilitate biological invasions and how this affects ecosystems within and outside urbanized areas thus becomes crucial. We here examine the role of urban environments in the invasion of the butterfly Pieris mannii that expanded across Central Europe within the last two decades. Using standardized butterfly captures at paired urban and (semi)natural field sites within the invaded range in Switzerland, we demonstrate that P. mannii is strongly associated with cities and towns. At least in some urban localities, this species is now the most common butterfly, and densities tend to be particularly high where urban areas are large. Because urban habitats commonly provide non-native host plants and perhaps also the physical structure and microclimate suitable to this butterfly, urbanization has clearly promoted the species’ rapid invasion. Studying phenology over an entire season, we further infer that P. mannii has up to six generations per year, which may allow the species to adjust its life cycle to changing season length during northward expansion. Overall, our study demonstrates how preadaptation to urbanized environments in a relatively specialized insect increases urban biodiversity on a large geographic scale.
期刊介绍:
Urban Ecosystems is an international journal devoted to scientific investigations of urban environments and the relationships between socioeconomic and ecological structures and processes in urban environments. The scope of the journal is broad, including interactions between urban ecosystems and associated suburban and rural environments. Contributions may span a range of specific subject areas as they may apply to urban environments: biodiversity, biogeochemistry, conservation biology, wildlife and fisheries management, ecosystem ecology, ecosystem services, environmental chemistry, hydrology, landscape architecture, meteorology and climate, policy, population biology, social and human ecology, soil science, and urban planning.