Ernesto C. Marujo, Gleice G. Rodrigues, Arthur A. Covatti
{"title":"Procedures to combine estimators of greenhouse gases emission factors","authors":"Ernesto C. Marujo, Gleice G. Rodrigues, Arthur A. Covatti","doi":"10.1186/s13021-024-00250-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>This article describes a new procedure to estimate the mean and variance of greenhouse gases (GHG) emission factors based on different, possibly conflicting, estimates for these emission factors. The procedure uses common information such as mean and standard deviation usually reported in IPCC (Intergovernmental Panel on Climate Change) database and other references in the literature that estimate emission factors. Essentially, it is a procedure in the class of meta-analysis, based on the computation of <span>\\({S}_{a}^{2}\\)</span>, a new estimator for the variance of the emission factor.</p><h3>Results</h3><p>We discuss the quality of this estimator in terms of its probability distribution and show that it is unbiased. The resulting confidence interval for the mean emission factor is tighter than those that would have resulted from using other estimators such as pooled variance and thus, the new procedure improves the accuracy in estimating GHG emissions.</p><p>The application of the procedure is illustrated in a case study involving the estimation of methane emissions from rice cultivation.</p><h3>Conclusions</h3><p>The estimation of emission factors using <span>\\({S}_{a}^{2}\\)</span> was demonstrated to be more accurate because it is not biased and more precise than alternative methods.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"19 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-024-00250-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-024-00250-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
This article describes a new procedure to estimate the mean and variance of greenhouse gases (GHG) emission factors based on different, possibly conflicting, estimates for these emission factors. The procedure uses common information such as mean and standard deviation usually reported in IPCC (Intergovernmental Panel on Climate Change) database and other references in the literature that estimate emission factors. Essentially, it is a procedure in the class of meta-analysis, based on the computation of \({S}_{a}^{2}\), a new estimator for the variance of the emission factor.
Results
We discuss the quality of this estimator in terms of its probability distribution and show that it is unbiased. The resulting confidence interval for the mean emission factor is tighter than those that would have resulted from using other estimators such as pooled variance and thus, the new procedure improves the accuracy in estimating GHG emissions.
The application of the procedure is illustrated in a case study involving the estimation of methane emissions from rice cultivation.
Conclusions
The estimation of emission factors using \({S}_{a}^{2}\) was demonstrated to be more accurate because it is not biased and more precise than alternative methods.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.