{"title":"[Intraoperative optical coherence tomography guided precise corneal suture in the treatment of acute keratoconus].","authors":"S X Li, N Wang, M Su, X Y Jiang, H Gao, W Y Shi","doi":"10.3760/cma.j.cn112142-20231016-00145","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aimed to observe the clinical efficacy of precise suturing of posterior elastic layer fissures guided by intraoperative optical coherence tomography (OCT) in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty for the treatment of severe acute edematous keratoconus. <b>Methods:</b> Non-randomized controlled trial. Data were collected for a study involving 31 cases of acute edematous keratoconus patients who underwent surgical treatment at the Shandong Eye Hospital between June 2017 and July 2021. Among them, there were 30 male and 1 female patients, with an age range of 11 to 32 years and a mean age of (19.80±5.80) years. Eighteen patients in the study group underwent precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in combination with anterior chamber puncture and drainage, and corneal thermokeratoplasty. Thirteen patients in the control group did not undergo suturing. Preoperative visual acuity, corneal edema diameter, corneal thickness, and posterior elastic layer fissure length were collected. Evaluation was performed using slit lamp microscopy, anterior segment OCT, and other methods to assess the time of initial postoperative corneal edema resolution and closure of the posterior elastic layer fissure. Deep lamellar keratoplasty was performed 2 to 4 weeks after edema resolution, and the corneal bed scar repair and visual acuity of the two groups were compared. <b>Results:</b> In the suturing group, the corneas of all 18 patients were accurately sutured to the deep stromal layer near the posterior elastic layer. The time for corneal edema resolution was 2.50 (1.00, 6.25) days in the suturing group and 7.00 (6.00, 10.50) days in the control group. The fissure healing time was 7.50 (7.00, 12.00) days in the suturing group and 14.00 (9.00, 14.00) days in the control group. The differences were statistically significant (all <i>P</i><0.05). After 2 weeks, the central corneal thickness decreased to (529.80±174.50) μm in the suturing group and (612.00±205.12) μm in the control group. The suturing group showed accurate corneal suturing to the deep stromal layer near the posterior elastic layer, resulting in central corneal flattening, closure of voids in the stroma, and a significant decrease in corneal thickness. All 18 patients in the suturing group successfully completed deep lamellar keratoplasty, with 6 cases (6/18) experiencing mild graft bed leakage during surgery but without affecting the deep lamellar keratoplasty. One year postoperatively, the visual acuity (logarithm of the minimum resolution angle) was 0.23±0.12 in the suturing group and 0.33±0.11 in the control group, with a statistically significant difference (<i>P</i><0.05). <b>Conclusions:</b> In the treatment of severe acute edematous keratoconus, precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty, can rapidly alleviate corneal edema and promote the healing of posterior elastic layer fissures. This approach achieves better visual outcomes for subsequent lamellar keratoplasty surgeries. The use of intraoperative OCT guidance allows accurate positioning of the posterior elastic layer fissure in terms of location, direction, and depth of corneal stromal voids, thereby assisting surgeons in precise suturing.</p>","PeriodicalId":39688,"journal":{"name":"中华眼科杂志","volume":"60 2","pages":"147-155"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华眼科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112142-20231016-00145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to observe the clinical efficacy of precise suturing of posterior elastic layer fissures guided by intraoperative optical coherence tomography (OCT) in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty for the treatment of severe acute edematous keratoconus. Methods: Non-randomized controlled trial. Data were collected for a study involving 31 cases of acute edematous keratoconus patients who underwent surgical treatment at the Shandong Eye Hospital between June 2017 and July 2021. Among them, there were 30 male and 1 female patients, with an age range of 11 to 32 years and a mean age of (19.80±5.80) years. Eighteen patients in the study group underwent precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in combination with anterior chamber puncture and drainage, and corneal thermokeratoplasty. Thirteen patients in the control group did not undergo suturing. Preoperative visual acuity, corneal edema diameter, corneal thickness, and posterior elastic layer fissure length were collected. Evaluation was performed using slit lamp microscopy, anterior segment OCT, and other methods to assess the time of initial postoperative corneal edema resolution and closure of the posterior elastic layer fissure. Deep lamellar keratoplasty was performed 2 to 4 weeks after edema resolution, and the corneal bed scar repair and visual acuity of the two groups were compared. Results: In the suturing group, the corneas of all 18 patients were accurately sutured to the deep stromal layer near the posterior elastic layer. The time for corneal edema resolution was 2.50 (1.00, 6.25) days in the suturing group and 7.00 (6.00, 10.50) days in the control group. The fissure healing time was 7.50 (7.00, 12.00) days in the suturing group and 14.00 (9.00, 14.00) days in the control group. The differences were statistically significant (all P<0.05). After 2 weeks, the central corneal thickness decreased to (529.80±174.50) μm in the suturing group and (612.00±205.12) μm in the control group. The suturing group showed accurate corneal suturing to the deep stromal layer near the posterior elastic layer, resulting in central corneal flattening, closure of voids in the stroma, and a significant decrease in corneal thickness. All 18 patients in the suturing group successfully completed deep lamellar keratoplasty, with 6 cases (6/18) experiencing mild graft bed leakage during surgery but without affecting the deep lamellar keratoplasty. One year postoperatively, the visual acuity (logarithm of the minimum resolution angle) was 0.23±0.12 in the suturing group and 0.33±0.11 in the control group, with a statistically significant difference (P<0.05). Conclusions: In the treatment of severe acute edematous keratoconus, precise suturing of posterior elastic layer fissures guided by intraoperative OCT, in conjunction with anterior chamber puncture and drainage, and corneal thermokeratoplasty, can rapidly alleviate corneal edema and promote the healing of posterior elastic layer fissures. This approach achieves better visual outcomes for subsequent lamellar keratoplasty surgeries. The use of intraoperative OCT guidance allows accurate positioning of the posterior elastic layer fissure in terms of location, direction, and depth of corneal stromal voids, thereby assisting surgeons in precise suturing.