Biologically plausible models of cognitive flexibility: merging recurrent neural networks with full-brain dynamics

IF 4.9 2区 心理学 Q1 BEHAVIORAL SCIENCES Current Opinion in Behavioral Sciences Pub Date : 2024-02-06 DOI:10.1016/j.cobeha.2024.101351
Maya van Holk, Jorge F Mejias
{"title":"Biologically plausible models of cognitive flexibility: merging recurrent neural networks with full-brain dynamics","authors":"Maya van Holk,&nbsp;Jorge F Mejias","doi":"10.1016/j.cobeha.2024.101351","DOIUrl":null,"url":null,"abstract":"<div><p>Cognitive flexibility, a cornerstone of human cognition, enables us to adapt to shifting environmental demands. This brain function has been widely explored using computational modeling, although oftentimes these models focus on the operational dimension of cognitive flexibility and do not retain a sufficient level of neurobiological detail to lead to electrophysiological or neuroimaging insights. In this review, we explore recent advances and future directions on neurobiologically plausible computational models of cognitive flexibility. We first cover progress in recurrent neural network models trained to perform flexible cognitive tasks, followed by a discussion on how whole-brain or large-scale brain network models have approached the distributed nature of flexible cognitive functions. Ultimately, we propose here a hybrid framework in which both modeling philosophies converge, advocating for a balanced approach that merges computational power with realistic spatiotemporal dynamics of brain activity, and explore early examples in this direction.</p></div>","PeriodicalId":56191,"journal":{"name":"Current Opinion in Behavioral Sciences","volume":"56 ","pages":"Article 101351"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352154624000020/pdfft?md5=1e537479488391b08e0da654bb9e9f22&pid=1-s2.0-S2352154624000020-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352154624000020","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive flexibility, a cornerstone of human cognition, enables us to adapt to shifting environmental demands. This brain function has been widely explored using computational modeling, although oftentimes these models focus on the operational dimension of cognitive flexibility and do not retain a sufficient level of neurobiological detail to lead to electrophysiological or neuroimaging insights. In this review, we explore recent advances and future directions on neurobiologically plausible computational models of cognitive flexibility. We first cover progress in recurrent neural network models trained to perform flexible cognitive tasks, followed by a discussion on how whole-brain or large-scale brain network models have approached the distributed nature of flexible cognitive functions. Ultimately, we propose here a hybrid framework in which both modeling philosophies converge, advocating for a balanced approach that merges computational power with realistic spatiotemporal dynamics of brain activity, and explore early examples in this direction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知灵活性的生物学合理模型:将递归神经网络与全脑动力学融合在一起
认知灵活性是人类认知的基石,它使我们能够适应不断变化的环境需求。尽管这些模型通常只关注认知灵活性的操作层面,并没有保留足够的神经生物学细节,从而无法带来电生理学或神经影像学方面的深入见解,但人们已经通过计算建模对这一大脑功能进行了广泛的探索。在这篇综述中,我们将探讨神经生物学上可信的认知灵活性计算模型的最新进展和未来方向。我们首先介绍了为执行灵活认知任务而训练的递归神经网络模型的进展,然后讨论了全脑或大规模脑网络模型如何处理灵活认知功能的分布式特性。最后,我们在此提出一种混合框架,使两种建模理念趋于一致,主张采用一种平衡的方法,将计算能力与大脑活动的现实时空动态结合起来,并探讨了这一方向的早期实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Behavioral Sciences
Current Opinion in Behavioral Sciences Neuroscience-Cognitive Neuroscience
CiteScore
10.90
自引率
2.00%
发文量
135
期刊介绍: Current Opinion in Behavioral Sciences is a systematic, integrative review journal that provides a unique and educational platform for updates on the expanding volume of information published in the field of behavioral sciences.
期刊最新文献
A light at the end of the axon: genetically encoded fluorescent indicators shine light on the dopamine system Dopaminergic computations for perceptual decisions From sensory motor and perceptual development to primary consciousness in the fetus: converging neural, behavioral, and imaging correlates of cognition-mediated emergent transitions Nonsynaptic encoding of behavior by neuropeptides Stress-free indulgence: indulge adaptively to promote goal pursuit and well-being
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1