{"title":"A Model Averaging Prediction of Two-Way Functional Data in Semiconductor Manufacturing","authors":"Soobin Kim;Youngwook Kwon;Joonpyo Kim;Kiwook Bae;Hee-Seok Oh","doi":"10.1109/TSM.2023.3339731","DOIUrl":null,"url":null,"abstract":"This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"76-86"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10345747/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a linear regression model for scalar-valued responses and two-way functional (bivariate) predictors. Our motivation stems from the quality evaluation of products based on optical emission spectroscopy data from virtual metrology of semiconductor manufacturing. We focus on multivariate cases where the smoothness and shapes of the data vary significantly across variables. We propose a two-step solution to this problem, consisting of decomposition and prediction. First, we decompose the two-way functional data into pairs of component functions using functional singular value decomposition. Next, we build functional linear models for the decomposed functional variables and obtain the final predictor by averaging the models. Results from numerical studies, including simulation studies and real data analysis, demonstrate the promising empirical properties of the proposed approach, especially when the number of predictors is large.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.