Hierarchical Task Planning for Power Line Flow Regulation

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-12-28 DOI:10.17775/CSEEJPES.2023.00620
Chenxi Wang;Youtian Du;Yanhao Huang;Yuanlin Chang;Zihao Guo
{"title":"Hierarchical Task Planning for Power Line Flow Regulation","authors":"Chenxi Wang;Youtian Du;Yanhao Huang;Yuanlin Chang;Zihao Guo","doi":"10.17775/CSEEJPES.2023.00620","DOIUrl":null,"url":null,"abstract":"The complexity and uncertainty in power systems cause great challenges to controlling power grids. As a popular data-driven technique, deep reinforcement learning (DRL) attracts attention in the control of power grids. However, DRL has some inherent drawbacks in terms of data efficiency and explainability. This paper presents a novel hierarchical task planning (HTP) approach, bridging planning and DRL, to the task of power line flow regulation. First, we introduce a three-level task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes (TP-MDPs). Second, we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units. In addition, we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP. Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization, a state-of-the-art deep reinforcement learning (DRL) approach, improving efficiency by 26.16% and 6.86% on both systems.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"29-40"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375975","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375975/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity and uncertainty in power systems cause great challenges to controlling power grids. As a popular data-driven technique, deep reinforcement learning (DRL) attracts attention in the control of power grids. However, DRL has some inherent drawbacks in terms of data efficiency and explainability. This paper presents a novel hierarchical task planning (HTP) approach, bridging planning and DRL, to the task of power line flow regulation. First, we introduce a three-level task hierarchy to model the task and model the sequence of task units on each level as a task planning-Markov decision processes (TP-MDPs). Second, we model the task as a sequential decision-making problem and introduce a higher planner and a lower planner in HTP to handle different levels of task units. In addition, we introduce a two-layer knowledge graph that can update dynamically during the planning procedure to assist HTP. Experimental results conducted on the IEEE 118-bus and IEEE 300-bus systems demonstrate our HTP approach outperforms proximal policy optimization, a state-of-the-art deep reinforcement learning (DRL) approach, improving efficiency by 26.16% and 6.86% on both systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力线流量调节的分层任务规划
电力系统的复杂性和不确定性给电网控制带来了巨大挑战。作为一种流行的数据驱动技术,深度强化学习(DRL)在电网控制中备受关注。然而,DRL 在数据效率和可解释性方面存在一些固有缺陷。本文提出了一种新颖的分层任务规划(HTP)方法,在规划和 DRL 之间架起桥梁,用于电力线流量调节任务。首先,我们引入了一个三层任务层次结构来建立任务模型,并将每一层任务单元的序列建模为任务规划-马尔可夫决策过程(TP-MDP)。其次,我们将任务建模为一个顺序决策问题,并在 HTP 中引入高级规划器和低级规划器来处理不同层次的任务单元。此外,我们还引入了双层知识图谱,可在规划过程中动态更新,以辅助 HTP。在 IEEE 118 总线和 IEEE 300 总线系统上进行的实验结果表明,我们的 HTP 方法优于最先进的深度强化学习(DRL)方法--近端策略优化,在两个系统上的效率分别提高了 26.16% 和 6.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1