The integration of blockchain technology with energy community trading represents a promising frontier in the energy sector, offering innovative solutions to challenges in energy trading and management. This review conducts a systematic investigation of the potential benefits, applications and challenges of blockchain in facilitating multi-level energy trading for energy communities. Firstly, the background information of the blockchain and Internet of Things (IoT) is provided, along with an elucidation of their integration architecture for energy communities. Building on this foundation, the applications of blockchain in transactive energy communities are analyzed from three perspectives: community-level energy trading, regional-level energy trading, and grid-level energy trading. Following that, the currently known projects and pilots on blockchain-based trans active energy are comprehensively summarized. Finally, key challenges in implementing blockchain-based energy trading for local energy communities are discussed, providing guidance for future research.
{"title":"Exploring the Potential of IoT-Blockchain Integration Technology for Energy Community Trading: Opportunities, Benefits, and Challenges","authors":"Wenhu Tang;Xuehua Xie;Yunlin Huang;Tong Qian;Weiwei Li;Xiuzhang Li;Zhao Xu","doi":"10.17775/CSEEJPES.2024.02160","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.02160","url":null,"abstract":"The integration of blockchain technology with energy community trading represents a promising frontier in the energy sector, offering innovative solutions to challenges in energy trading and management. This review conducts a systematic investigation of the potential benefits, applications and challenges of blockchain in facilitating multi-level energy trading for energy communities. Firstly, the background information of the blockchain and Internet of Things (IoT) is provided, along with an elucidation of their integration architecture for energy communities. Building on this foundation, the applications of blockchain in transactive energy communities are analyzed from three perspectives: community-level energy trading, regional-level energy trading, and grid-level energy trading. Following that, the currently known projects and pilots on blockchain-based trans active energy are comprehensively summarized. Finally, key challenges in implementing blockchain-based energy trading for local energy communities are discussed, providing guidance for future research.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"521-537"},"PeriodicalIF":6.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10899788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21DOI: 10.17775/CSEEJPES.2024.06310
Hanchi Zhang;Hongyang Zhou;Filipe Faria da Silva;Claus Leth Bak
An increasing number of large-scale renewable plants are generating abundant electricity. As power-to-gas and power-to-x technologies become promising ways to utilize surplus electricity to enhance the flexibility of energy systems, an innovative gas-electricity integrated transmission system (GEITS) to co-transmit electricity and hydrogen or other gas products is proposed, with the foreseeable advantages of compact structure, lower installation cost, and larger energy capacity. This paper investigates the feasibility of GEITS, suggests a design guideline, and gives the operation technical parameters of GEITS in different application scenarios. The dimensions and operating pressures of GEITS benchmark natural gas pipelines and then the nominal voltages of GEITS are calculated based on the electrical strength of high-pressure hydrogen. The nominal ampacities of GEITS are evaluated by temperature-rising simulations, which are larger than those of other transmission lines. Furthermore, high-pressure flowing hydrogen acting as an electrical insulator is a novel topic, and it is investigated via experimental validation on a scale model. Although the effect of 0.4 m/s flowing hydrogen on discharge characteristics has not been observed compared to static hydrogen, the discharge is impaired in 2.4 m/s flowing nitrogen. Future works will investigate the electrical strength of high-pressure long-distance hydrogen gaps under lightning impulse tests and the discharge phenomenon in higher flowing-velocity hydrogen. Methane and methane blended with hydrogen with higher insulation performance can increase the nominal voltages.
{"title":"Feasibility Analysis and Design of Gas-Electricity Integrated Transmission System","authors":"Hanchi Zhang;Hongyang Zhou;Filipe Faria da Silva;Claus Leth Bak","doi":"10.17775/CSEEJPES.2024.06310","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.06310","url":null,"abstract":"An increasing number of large-scale renewable plants are generating abundant electricity. As power-to-gas and power-to-x technologies become promising ways to utilize surplus electricity to enhance the flexibility of energy systems, an innovative gas-electricity integrated transmission system (GEITS) to co-transmit electricity and hydrogen or other gas products is proposed, with the foreseeable advantages of compact structure, lower installation cost, and larger energy capacity. This paper investigates the feasibility of GEITS, suggests a design guideline, and gives the operation technical parameters of GEITS in different application scenarios. The dimensions and operating pressures of GEITS benchmark natural gas pipelines and then the nominal voltages of GEITS are calculated based on the electrical strength of high-pressure hydrogen. The nominal ampacities of GEITS are evaluated by temperature-rising simulations, which are larger than those of other transmission lines. Furthermore, high-pressure flowing hydrogen acting as an electrical insulator is a novel topic, and it is investigated via experimental validation on a scale model. Although the effect of 0.4 m/s flowing hydrogen on discharge characteristics has not been observed compared to static hydrogen, the discharge is impaired in 2.4 m/s flowing nitrogen. Future works will investigate the electrical strength of high-pressure long-distance hydrogen gaps under lightning impulse tests and the discharge phenomenon in higher flowing-velocity hydrogen. Methane and methane blended with hydrogen with higher insulation performance can increase the nominal voltages.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"595-606"},"PeriodicalIF":6.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10899793","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large-scale renewable energy transmission via the voltage source converter (VSC) based high-voltage direct current (HVDC) is a crucial development direction for constructing a new-typed power system in China. However, renewable energy is characterized by volatility, intermittency, and randomness. When the sending-end modular multilevel converter (MMC) cannot adapt to the rapid fluctuations in renewable energy output, its energy balance will be disrupted by the active power difference between the AC and DC sides, causing issues such as wideband oscillations and exacerbated circulating currents. To solve the problem mentioned above, a novel energy balance-based control method for MMCs connected to wind farms is proposed in this paper, enabling the MM C to effectively adapt to fluctuations in renewable energy output and naturally maintain circulating current at a relatively low level. Firstly, the evolution principle illustrating topology decomposition and reconfiguration of the MMC is revealed. Secondly, the control method for AC internal voltage is proposed, which combines the energy balance between the half MMCs and voltage amplitude support. Thirdly, the DC internal voltage is defined, and its control method is proposed based on the MMC's overall energy balance. Then, independent control of each bridge arm is achieved by integrating the energy balance of the bridge arms with both the AC and DC internal voltages. Finally, an electromagnetic transient simulation model is built with PSCADIEMTDC, and the efficacy and practicality of the proposed method are demonstrated through extensive simulation experiments.
{"title":"Novel Control Method for the MMC Connected to Wind Farms","authors":"Xiangyu Pei;Caoyang Jia;Feng Ji;Hui Pang;Guangfu Tang","doi":"10.17775/CSEEJPES.2024.03920","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.03920","url":null,"abstract":"Large-scale renewable energy transmission via the voltage source converter (VSC) based high-voltage direct current (HVDC) is a crucial development direction for constructing a new-typed power system in China. However, renewable energy is characterized by volatility, intermittency, and randomness. When the sending-end modular multilevel converter (MMC) cannot adapt to the rapid fluctuations in renewable energy output, its energy balance will be disrupted by the active power difference between the AC and DC sides, causing issues such as wideband oscillations and exacerbated circulating currents. To solve the problem mentioned above, a novel energy balance-based control method for MMCs connected to wind farms is proposed in this paper, enabling the MM C to effectively adapt to fluctuations in renewable energy output and naturally maintain circulating current at a relatively low level. Firstly, the evolution principle illustrating topology decomposition and reconfiguration of the MMC is revealed. Secondly, the control method for AC internal voltage is proposed, which combines the energy balance between the half MMCs and voltage amplitude support. Thirdly, the DC internal voltage is defined, and its control method is proposed based on the MMC's overall energy balance. Then, independent control of each bridge arm is achieved by integrating the energy balance of the bridge arms with both the AC and DC internal voltages. Finally, an electromagnetic transient simulation model is built with PSCADIEMTDC, and the efficacy and practicality of the proposed method are demonstrated through extensive simulation experiments.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"481-489"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838244","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.17775/CSEEJPES.2024.01180
Yuqing Lin;Tianhao Wen;Lei Chen;Yang Liu;Q. H. Wu
Part II of this paper presents a reduced-order stability region (ROSR) based method to estimate the full-order stability region (FOSR) of a large-scale power system. First, we introduce the definitions of FOSR and ROSR, followed by a comprehensive theory that reveals the relationships between them. Since the full-order system can be rewritten as a standard two timescale model and the reduced-order system is regarded as the slow subsystem of it, the proposed theory is derived based on the idea of singular perturbation. With rigorous mathematical proof, the properties of FOSR and ROSR are revealed. Moreover, a modified Energy Augmented Dynamic (EAD) algorithm and a constrained equidistant projection (CEP) approach are employed to estimate the ROSR and FOSR, respectively. The modified EAD algorithm and CEP form a so-called reduced-order stability region mapping (ROSRM) method. Finally, the proposed ROSRM method is applied to the IEEE 10-machine-39-bus power system, and simulation studies confirm its superiority to the traditional energy function method in terms of computational speed and reliability of results.
{"title":"Estimating Transient Stability Regions of Large-Scale Power Systems Part II: Reduced-Order Stability Region with Computational Efficiency","authors":"Yuqing Lin;Tianhao Wen;Lei Chen;Yang Liu;Q. H. Wu","doi":"10.17775/CSEEJPES.2024.01180","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.01180","url":null,"abstract":"Part II of this paper presents a reduced-order stability region (ROSR) based method to estimate the full-order stability region (FOSR) of a large-scale power system. First, we introduce the definitions of FOSR and ROSR, followed by a comprehensive theory that reveals the relationships between them. Since the full-order system can be rewritten as a standard two timescale model and the reduced-order system is regarded as the slow subsystem of it, the proposed theory is derived based on the idea of singular perturbation. With rigorous mathematical proof, the properties of FOSR and ROSR are revealed. Moreover, a modified Energy Augmented Dynamic (EAD) algorithm and a constrained equidistant projection (CEP) approach are employed to estimate the ROSR and FOSR, respectively. The modified EAD algorithm and CEP form a so-called reduced-order stability region mapping (ROSRM) method. Finally, the proposed ROSRM method is applied to the IEEE 10-machine-39-bus power system, and simulation studies confirm its superiority to the traditional energy function method in terms of computational speed and reliability of results.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"38-50"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.17775/CSEEJPES.2024.00240
Yi Wang;Goran Strbac
Large renewable penetration has been witnessed in power systems, resulting in reduced level of system inertia and increasing requirements for frequency response services. There have been plenty of studies developing frequency-constrained operation models for power system security. However, most existing literature only focuses on operational level rather than planning level. To fill this gap, this paper proposes a novel planning model for the optimal sizing problem of integrated power and gas systems, capturing both under and over frequency security requirements. A detailed unit commitment setup considering different ramping rates is incorporated into the planning model to accurately represent the scheduling behavior of each individual generator and accurate inertia calculation. The power importing and exporting behaviors of interconnectors are considered, which can influence the largest loss of generation and demand, accounting for under and over frequency security, respectively. Additionally, a deep learning-based clustering method featured by concurrent and integrated learning is introduced in the planning model to effectively generate representative days. Case studies have been conducted on a coupled 6-bus power and 7-node gas system as well as a 14-bus power and 14-node gas system to verify the effectiveness of the proposed planning model in accurate clustering performance and realistic investment decision making.
{"title":"A Planning Model for Optimal Sizing of Integrated Power and Gas Systems Capturing Frequency Security","authors":"Yi Wang;Goran Strbac","doi":"10.17775/CSEEJPES.2024.00240","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.00240","url":null,"abstract":"Large renewable penetration has been witnessed in power systems, resulting in reduced level of system inertia and increasing requirements for frequency response services. There have been plenty of studies developing frequency-constrained operation models for power system security. However, most existing literature only focuses on operational level rather than planning level. To fill this gap, this paper proposes a novel planning model for the optimal sizing problem of integrated power and gas systems, capturing both under and over frequency security requirements. A detailed unit commitment setup considering different ramping rates is incorporated into the planning model to accurately represent the scheduling behavior of each individual generator and accurate inertia calculation. The power importing and exporting behaviors of interconnectors are considered, which can influence the largest loss of generation and demand, accounting for under and over frequency security, respectively. Additionally, a deep learning-based clustering method featured by concurrent and integrated learning is introduced in the planning model to effectively generate representative days. Case studies have been conducted on a coupled 6-bus power and 7-node gas system as well as a 14-bus power and 14-node gas system to verify the effectiveness of the proposed planning model in accurate clustering performance and realistic investment decision making.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"580-594"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838252","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.17775/CSEEJPES.2024.04920
Shuang Li;Haijiao Wang;Yuehui Huang;Guoqing He;Chun Liu;Weisheng Wang
The grid-connected converter with grid-following control (GCC-GFL) for renewable energy sources has a risk of instability when integrated into the weak grid. This paper aims to investigate the dynamic interactions and stability characteristics of the GCC-GFL system. From a control system perspective, the mechanism of small-signal instability in the system is revealed through dynamic interaction analysis between the GCC-GFL and the weak grid. Meanwhile, a novel stability evaluation index is proposed based on the real and imaginary parts of the equivalent loop gain in a multi-loop control system. On this basis, the dominant loop of the control system leading to system instability is identified. Furthermore, quantitative analyses are conducted to investigate the stability region of the GCC-GFL, considering the influence of AC grid strength, steady-state operating points, and converter control parameters. Finally, the correctness and effectiveness of the proposed methods are verified by the impedance analysis method, the time-domain simulations, and the experiments, respectively.
{"title":"Dynamic Interaction and Stability Analysis of Grid-following Converter Integrated Into Weak Grid","authors":"Shuang Li;Haijiao Wang;Yuehui Huang;Guoqing He;Chun Liu;Weisheng Wang","doi":"10.17775/CSEEJPES.2024.04920","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.04920","url":null,"abstract":"The grid-connected converter with grid-following control (GCC-GFL) for renewable energy sources has a risk of instability when integrated into the weak grid. This paper aims to investigate the dynamic interactions and stability characteristics of the GCC-GFL system. From a control system perspective, the mechanism of small-signal instability in the system is revealed through dynamic interaction analysis between the GCC-GFL and the weak grid. Meanwhile, a novel stability evaluation index is proposed based on the real and imaginary parts of the equivalent loop gain in a multi-loop control system. On this basis, the dominant loop of the control system leading to system instability is identified. Furthermore, quantitative analyses are conducted to investigate the stability region of the GCC-GFL, considering the influence of AC grid strength, steady-state operating points, and converter control parameters. Finally, the correctness and effectiveness of the proposed methods are verified by the impedance analysis method, the time-domain simulations, and the experiments, respectively.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"552-566"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838264","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The GFL-GFM hybrid wind farm (HWF) combines the voltage source control advantages of grid-forming (GFM) wind turbines (WTs) with the current source control advantages of grid-following (GFL) wind turbines. It becomes a new type of large-scale grid-connected wind power generation. In this paper, we propose an HWF frequency-voltage active support based on GFL and GFM hierarchical subgroup control. It aims to realize the support of active power and reactive power under the premise of ensuring system stability. The strategy consists of the determination of the control objectives of the GFM-GFL subgroups, the distributed control (DC) of the GFM-GFL subgroups, and the adaptive control and switching of each unit of the GFM and GFL groups. The GFM-group maintains the grid-connected voltage stability and the GFL-group exhausts the active support. DC at the group level and adaptive control at the unit level are included under the hierarchy of the respective objectives. Finally, a GFL-GFM HWF model is established on the MATLAB/Simulink platform, and the simulation verifies that the proposed strategy can realize the enhancement of the frequency-voltage support capability of the HWF under the premise of grid-connected stability.
{"title":"Frequency-Voltage Active Support Strategy for Hybrid Wind Farms Based on Grid-Following and Grid-Forming Hierarchical Subgroup Control","authors":"Haiyu Zhao;Qihang Zong;Hongyu Zhou;Wei Yao;Kangyi Sun;Yuqing Zhou;Jinyu Wen","doi":"10.17775/CSEEJPES.2024.02340","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.02340","url":null,"abstract":"The GFL-GFM hybrid wind farm (HWF) combines the voltage source control advantages of grid-forming (GFM) wind turbines (WTs) with the current source control advantages of grid-following (GFL) wind turbines. It becomes a new type of large-scale grid-connected wind power generation. In this paper, we propose an HWF frequency-voltage active support based on GFL and GFM hierarchical subgroup control. It aims to realize the support of active power and reactive power under the premise of ensuring system stability. The strategy consists of the determination of the control objectives of the GFM-GFL subgroups, the distributed control (DC) of the GFM-GFL subgroups, and the adaptive control and switching of each unit of the GFM and GFL groups. The GFM-group maintains the grid-connected voltage stability and the GFL-group exhausts the active support. DC at the group level and adaptive control at the unit level are included under the hierarchy of the respective objectives. Finally, a GFL-GFM HWF model is established on the MATLAB/Simulink platform, and the simulation verifies that the proposed strategy can realize the enhancement of the frequency-voltage support capability of the HWF under the premise of grid-connected stability.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"65-77"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838248","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.17775/CSEEJPES.2024.01170
Yuqing Lin;Tianhao Wen;Lei Chen;Q. H. Wu;Yang Liu
This paper presents an estimation of transient stability regions for large-scale power systems. In Part I, a Koopman operator based model reduction (KOMR) method is proposed to derive a low-order dynamical model with reasonable accuracy for transient stability analysis of large-scale power systems. Unlike traditional reduction methods based on linearized models, the proposed method does not require linearization, but captures dominant modes of the original nonlinear dynamics by employing a Koopman operator defined in an infinite-dimensional observable space. Combined with the Galerkin projection, the obtained dominant Koopman eigenvalues and modes produce a reduced-order nonlinear model. To approximate the Koopman operator with sufficient accuracy, we introduce a Polynomial-based Multi-trajectory Kernel Dynamic Mode Decomposition (PMK-DMD) algorithm, which outperforms traditional DMD in various scenarios. In the end, the proposed method is applied to the IEEE 10-machine-39-bus power system and IEEE 16-machine-68-bus power system, which demonstrates that our method is significantly superior to the modal analysis method in both qualitative and quantitative aspects.
{"title":"Estimating Transient Stability Regions of Large-Scale Power Systems Part I: Koopman Operator and Reduced-Order Model","authors":"Yuqing Lin;Tianhao Wen;Lei Chen;Q. H. Wu;Yang Liu","doi":"10.17775/CSEEJPES.2024.01170","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.01170","url":null,"abstract":"This paper presents an estimation of transient stability regions for large-scale power systems. In Part I, a Koopman operator based model reduction (KOMR) method is proposed to derive a low-order dynamical model with reasonable accuracy for transient stability analysis of large-scale power systems. Unlike traditional reduction methods based on linearized models, the proposed method does not require linearization, but captures dominant modes of the original nonlinear dynamics by employing a Koopman operator defined in an infinite-dimensional observable space. Combined with the Galerkin projection, the obtained dominant Koopman eigenvalues and modes produce a reduced-order nonlinear model. To approximate the Koopman operator with sufficient accuracy, we introduce a Polynomial-based Multi-trajectory Kernel Dynamic Mode Decomposition (PMK-DMD) algorithm, which outperforms traditional DMD in various scenarios. In the end, the proposed method is applied to the IEEE 10-machine-39-bus power system and IEEE 16-machine-68-bus power system, which demonstrates that our method is significantly superior to the modal analysis method in both qualitative and quantitative aspects.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"24-37"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Though an accurate discretization approach for gas flow dynamics, the method of characteristics (MOC) is liable to instability for inappropriate step sizes. This letter addresses the numerical stability limitation of MOC, in the context of lEGS's optimal scheduling. Specifically, the proposed method enables flexible temporal step sizes without sacrificing accuracy, significantly reducing non-convergence due to numerical oscillations. The effectiveness of the proposed method is validated through case studies in different simulation settings.
尽管特征法(MOC)是一种精确的气体流动动力学离散方法,但在步长不合适的情况下容易出现不稳定性。这封信以 lEGS 的优化调度为背景,探讨了 MOC 在数值稳定性方面的局限性。具体来说,所提出的方法可以在不牺牲精度的情况下实现灵活的时间步长,从而显著减少因数值振荡而导致的不收敛现象。通过在不同模拟环境中进行案例研究,验证了所提方法的有效性。
{"title":"Optimal Scheduling of Integrated Electricity and Gas System with Numerical Stability Condition-Free Method","authors":"Suhan Zhang;Chi Yung Chung;Wei Gu;Ruizhi Yu;Shuai Lu;Pengfei Zhao","doi":"10.17775/CSEEJPES.2024.04140","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.04140","url":null,"abstract":"Though an accurate discretization approach for gas flow dynamics, the method of characteristics (MOC) is liable to instability for inappropriate step sizes. This letter addresses the numerical stability limitation of MOC, in the context of lEGS's optimal scheduling. Specifically, the proposed method enables flexible temporal step sizes without sacrificing accuracy, significantly reducing non-convergence due to numerical oscillations. The effectiveness of the proposed method is validated through case studies in different simulation settings.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"607-611"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838238","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.17775/CSEEJPES.2024.00960
Peng Li;Zhen Dai;Yachen Tang;Guangyi Liu;Jiaxuan Hou;Qinyu Feng;Quanchen Lin
By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed.
{"title":"Spatiotemporal Data Graph Modeling and Exploration of Application Scenarios in “Power Grid One Graph”","authors":"Peng Li;Zhen Dai;Yachen Tang;Guangyi Liu;Jiaxuan Hou;Qinyu Feng;Quanchen Lin","doi":"10.17775/CSEEJPES.2024.00960","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2024.00960","url":null,"abstract":"By modeling the spatiotemporal data of the power grid, it is possible to better understand its operational status, identify potential issues and risks, and take timely measures to adjust and optimize the system. Compared to the bus-branch model, the node-breaker model provides higher granularity in describing grid components and can dynamically reflect changes in equipment status, thus improving the efficiency of grid dispatching and operation. This paper proposes a spatiotemporal data modeling method based on a graph database. It elaborates on constructing graph nodes, graph ontology models, and graph entity models from grid dispatch data, describing the construction of the spatiotemporal node-breaker graph model and the transformation to the bus-branch model. Subsequently, by integrating spatiotemporal data attributes into the pre-built static grid graph model, a spatiotemporal evolving graph of the power grid is constructed. Furthermore, the concept of the “Power Grid One Graph” and its requirements in modern power systems are elucidated. Leveraging the constructed spatiotemporal node-breaker graph model and graph computing technology, the paper explores the feasibility of grid situational awareness. Finally, typical applications in an operational provincial grid are showcased, and potential scenarios of the proposed spatiotemporal graph model are discussed.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 2","pages":"538-551"},"PeriodicalIF":6.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10838247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143860946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}