{"title":"Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis.","authors":"Morteza Taravat, Reza Asadpour, Razi Jafari Jozani, Amir Fattahi, Monireh Khordadmehr, Hamed Hajipour","doi":"10.1080/19396368.2024.2306420","DOIUrl":null,"url":null,"abstract":"<p><p>Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (<i>MUC-16</i>) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, <i>Muc-16</i> genes as well as IL<i>-</i>18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"70 1","pages":"3-19"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2024.2306420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-β (TGF-β), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.