{"title":"Primary Afferent Depolarization and the Gate Control Theory of Pain: A Tutorial Simulation.","authors":"Bill Heitler","doi":"10.59390/PWFC1224","DOIUrl":null,"url":null,"abstract":"<p><p>The gate control theory of pain postulates that the sensation of pain can be reduced or blocked by closing a \"gate\" at the earliest synaptic level in the spinal cord, where nociceptive (pain) afferents excite the ascending interneurons that transmit the signal to the brain. Furthermore, the gate can be induced to close by stimulating touch afferents with receptive fields in the same general area as the trauma that is generating the pain (the \"rub it to make it better\" effect). A considerable volume of research has substantiated the theory and shown that a key mechanism mediating the gate is pre-synaptic inhibition, and that this inhibition is generated by depolarizing IPSPs in the nociceptor central terminals (primary afferent depolarization; PAD). Both pre-synaptic inhibition and depolarizing IPSPs are topics that students often regard as matters of secondary importance (if they are aware of them at all), and yet they are crucial to a matter of primary importance to us all - pain control. This report describes some simple computer simulations that illustrate pre-synaptic inhibition and explore the importance of the depolarizing aspect of the IPSPs. These concepts are then built into a model of the gate control of pain itself. Finally, the simulations show how a small change in chloride homeostasis can generate the dorsal root reflex, in which nociceptor afferents generate antidromic spikes which may increase neurogenic inflammation and actually exacerbate pain. The hope is that the simulations will increase awareness and understanding of a topic that is important in both basic neuroscience and medical neurology.</p>","PeriodicalId":74004,"journal":{"name":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","volume":"22 1","pages":"A58-A65"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768827/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59390/PWFC1224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The gate control theory of pain postulates that the sensation of pain can be reduced or blocked by closing a "gate" at the earliest synaptic level in the spinal cord, where nociceptive (pain) afferents excite the ascending interneurons that transmit the signal to the brain. Furthermore, the gate can be induced to close by stimulating touch afferents with receptive fields in the same general area as the trauma that is generating the pain (the "rub it to make it better" effect). A considerable volume of research has substantiated the theory and shown that a key mechanism mediating the gate is pre-synaptic inhibition, and that this inhibition is generated by depolarizing IPSPs in the nociceptor central terminals (primary afferent depolarization; PAD). Both pre-synaptic inhibition and depolarizing IPSPs are topics that students often regard as matters of secondary importance (if they are aware of them at all), and yet they are crucial to a matter of primary importance to us all - pain control. This report describes some simple computer simulations that illustrate pre-synaptic inhibition and explore the importance of the depolarizing aspect of the IPSPs. These concepts are then built into a model of the gate control of pain itself. Finally, the simulations show how a small change in chloride homeostasis can generate the dorsal root reflex, in which nociceptor afferents generate antidromic spikes which may increase neurogenic inflammation and actually exacerbate pain. The hope is that the simulations will increase awareness and understanding of a topic that is important in both basic neuroscience and medical neurology.