{"title":"Soportes actuales en falla hepática: cuando el trasplante se hace esperar","authors":"Leyla Nazal , Rodolfo Valenzuela , Andrés Ferre","doi":"10.1016/j.rmclc.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Fulminant hepatic failure (FHF) and acute on chronic liver failure (ACLF) are entities with high morbidity and mortality, with liver transplantation being, in most cases, the only effective therapeutic alternative. The shortage of donors makes it necessary to have liver function support systems, which allow the patient to be kept in adequate conditions until transplantation or improvement. Despite greater knowledge of the pathophysiology of FHF, ACLF, as well as technological advances, we still do not have extracorporeal artificial liver support systems that allow complete replacement of liver function, acting mainly as palliative or symptomatic therapies while awaiting liver transplantation. The systems currently available combine different methods that purify toxins and molecules of different sizes and types, based on dialysis enriched with albumin. In recent years, promising new adsorption filters have been developed and conventional techniques, such as plasma exchange, are under reevaluation. There is still no consensus, however, regarding ideal therapy in different clinical scenarios. The objective of this article is to offer a state of the art view of available technologies and results in different clinical scenarios.</p></div>","PeriodicalId":31544,"journal":{"name":"Revista Medica Clinica Las Condes","volume":"35 1","pages":"Pages 45-53"},"PeriodicalIF":0.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S071686402400004X/pdfft?md5=feca872edb06587f76e5b332a2aeae8b&pid=1-s2.0-S071686402400004X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Medica Clinica Las Condes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S071686402400004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fulminant hepatic failure (FHF) and acute on chronic liver failure (ACLF) are entities with high morbidity and mortality, with liver transplantation being, in most cases, the only effective therapeutic alternative. The shortage of donors makes it necessary to have liver function support systems, which allow the patient to be kept in adequate conditions until transplantation or improvement. Despite greater knowledge of the pathophysiology of FHF, ACLF, as well as technological advances, we still do not have extracorporeal artificial liver support systems that allow complete replacement of liver function, acting mainly as palliative or symptomatic therapies while awaiting liver transplantation. The systems currently available combine different methods that purify toxins and molecules of different sizes and types, based on dialysis enriched with albumin. In recent years, promising new adsorption filters have been developed and conventional techniques, such as plasma exchange, are under reevaluation. There is still no consensus, however, regarding ideal therapy in different clinical scenarios. The objective of this article is to offer a state of the art view of available technologies and results in different clinical scenarios.