A Digital Logic Flipped Classroom for Promoting Students’ Preclass Preparation and Participation in Classroom Activities Using a Guided Reflective Thinking Mechanism

IF 2.1 2区 工程技术 Q2 EDUCATION, SCIENTIFIC DISCIPLINES IEEE Transactions on Education Pub Date : 2023-11-30 DOI:10.1109/TE.2023.3330417
Tuan-Yung Han;Hong-Ren Chen
{"title":"A Digital Logic Flipped Classroom for Promoting Students’ Preclass Preparation and Participation in Classroom Activities Using a Guided Reflective Thinking Mechanism","authors":"Tuan-Yung Han;Hong-Ren Chen","doi":"10.1109/TE.2023.3330417","DOIUrl":null,"url":null,"abstract":"Contribution: This study used a guided reflective thinking mechanism to improve students’ acceptance of flipped classrooms while promoting the development of students’ will and self-regulated learning strategies to enhance their preclass preparation and participation in classroom activities. Background: Previous research has provided evidence of the impact of flipped classrooms on student learning, but an understanding of the relationship between flipped classrooms, learning strategies, and learning outcomes is limited. Intended Outcome: The learning strategies used by students in the flipped classroom were examined, and the effectiveness of incorporating a guided reflective thinking mechanism into the flipped classroom teaching design of a digital logic (DL) course was evaluated. Application Design: Referring to the strategic learning model, this study integrated the mechanism of guided reflective thinking into the instructional design of a flipped classroom for first-year students in the Department of Electrical Engineering of a junior college in Taiwan. Findings: The results show that the flipped classroom teaching design that guides the reflective thinking mechanism can promote the development of students’ strategies to enhance their attitude, motivation, time management, concentration, self-testing, and solving learning difficulties, thereby improving their performance in DL courses. Furthermore, self-testing strategies are the most important predictor of students’ performance in DL courses.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10335661/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Contribution: This study used a guided reflective thinking mechanism to improve students’ acceptance of flipped classrooms while promoting the development of students’ will and self-regulated learning strategies to enhance their preclass preparation and participation in classroom activities. Background: Previous research has provided evidence of the impact of flipped classrooms on student learning, but an understanding of the relationship between flipped classrooms, learning strategies, and learning outcomes is limited. Intended Outcome: The learning strategies used by students in the flipped classroom were examined, and the effectiveness of incorporating a guided reflective thinking mechanism into the flipped classroom teaching design of a digital logic (DL) course was evaluated. Application Design: Referring to the strategic learning model, this study integrated the mechanism of guided reflective thinking into the instructional design of a flipped classroom for first-year students in the Department of Electrical Engineering of a junior college in Taiwan. Findings: The results show that the flipped classroom teaching design that guides the reflective thinking mechanism can promote the development of students’ strategies to enhance their attitude, motivation, time management, concentration, self-testing, and solving learning difficulties, thereby improving their performance in DL courses. Furthermore, self-testing strategies are the most important predictor of students’ performance in DL courses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用引导反思机制促进学生课前准备和参与课堂活动的数字逻辑翻转课堂
贡献:本研究采用引导式反思机制,提高学生对翻转课堂的接受程度,同时促进学生意志和自我调节学习策略的发展,加强学生的课前准备和课堂活动参与。研究背景以往的研究已经证明了翻转课堂对学生学习的影响,但对翻转课堂、学习策略和学习效果之间关系的了解还很有限。预期成果:考察学生在翻转课堂中使用的学习策略,评估在数字逻辑(DL)课程的翻转课堂教学设计中加入引导反思机制的效果。应用设计:参照策略学习模式,本研究将引导性反思机制融入台湾某专科学校电子工程系一年级学生的翻转课堂教学设计中。研究结果结果显示,引导反思性思考机制的翻转课堂教学设计能促进学生在态度、动机、时间管理、专注力、自我测试和解决学习困难等方面的策略发展,从而提高他们在DL课程中的表现。此外,自我测试策略是预测学生在通识课程中表现的最重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Education
IEEE Transactions on Education 工程技术-工程:电子与电气
CiteScore
5.80
自引率
7.70%
发文量
90
审稿时长
1 months
期刊介绍: The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.
期刊最新文献
Development and Evaluation of Remote Laboratory System for Simulated Induction Motor Developing and Validating the Contextual Technology Andragogy/Pedagogy Entrepreneurship Work Content Knowledge Model: A Framework for Vocational Education Learning Through Explanation: Producing and Peer-Reviewing Videos on Electric Circuits Problem Solving Constructing a Computational Thinking Evaluation Framework for Pupils Formal Concept Analysis of Students’ Solutions on Computational Thinking Game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1