Mycofiltration of Aqueous Iron (III) and Imidacloprid Solutions, and the Effects of the Filtrates on Selected Biomarkers of the Freshwater Snail Helisoma duryi
Sanele M. Mnkandla, Mafereka Francis Tyson Mosoabisane, Norah Basopo, Patricks Voua Otomo
{"title":"Mycofiltration of Aqueous Iron (III) and Imidacloprid Solutions, and the Effects of the Filtrates on Selected Biomarkers of the Freshwater Snail Helisoma duryi","authors":"Sanele M. Mnkandla, Mafereka Francis Tyson Mosoabisane, Norah Basopo, Patricks Voua Otomo","doi":"10.1007/s00244-023-01049-3","DOIUrl":null,"url":null,"abstract":"<div><p>To alleviate the burden of water contamination, a newly developed form of bioremediation known as mycofiltration can be employed. Mycofiltration is an environment-friendly technology involving the treatment of contaminated water by passing it through a network of saprophytic fungal mycelium. A mycofilter made of <i>Pleurotus ostreatus</i> was used for the removal of iron (III) and imidacloprid from aqueous solutions. Batch mycofiltration, at a dosage of 1 g of mycofilter per 50 mL, was performed on iron (III) solutions of different concentrations (0.99, 10.7, 22.9, and 27.72 mg/L) and pH (3.3, 7 and 11). For column mycofiltration, the mycofilter was packed into pyrex columns (3.3 × 15 cm) to desired bed heights. Iron (III) and imidacloprid solutions of 18.99 mg/L and 234.70 ng/L, respectively, were filtered at a constant flow rate. Thereafter, <i>Helisoma duryi</i> snails were exposed for 96 h to the respective filtrates, and their catalase and acetylcholinesterase activities were assessed. Batch mycofiltration showed iron (III) removal rates as high as 85%. Column mycofiltration showed removal rates of 94 and 31% for iron (III) and imidacloprid, respectively. Catalase activity was significantly reduced (<i>p</i> < 0.05) in the snails exposed to iron (III) or imidacloprid filtrates, compared to the snails exposed to the non-mycofiltered media. A significantly higher acetylcholinesterase activity was induced by iron (III) filtrates in comparison with the non-mycofiltered media (<i>p</i> < 0.05). There were no significant differences in acetylcholinesterase activity (<i>p</i> > 0.05) in the snails exposed to mycofiltered and non-mycofiltered imidacloprid media. Mycofilter characterisation using Fourier Transform Infrared Spectrophotometry revealed significant changes in transmittance intensity in the mycofilters used for the iron (III) vs the ones used for the imidacloprid solutions. Mycofiltration was found to improve water quality although iron (III) was removed more effectively than imidacloprid.</p></div>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":"86 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00244-023-01049-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To alleviate the burden of water contamination, a newly developed form of bioremediation known as mycofiltration can be employed. Mycofiltration is an environment-friendly technology involving the treatment of contaminated water by passing it through a network of saprophytic fungal mycelium. A mycofilter made of Pleurotus ostreatus was used for the removal of iron (III) and imidacloprid from aqueous solutions. Batch mycofiltration, at a dosage of 1 g of mycofilter per 50 mL, was performed on iron (III) solutions of different concentrations (0.99, 10.7, 22.9, and 27.72 mg/L) and pH (3.3, 7 and 11). For column mycofiltration, the mycofilter was packed into pyrex columns (3.3 × 15 cm) to desired bed heights. Iron (III) and imidacloprid solutions of 18.99 mg/L and 234.70 ng/L, respectively, were filtered at a constant flow rate. Thereafter, Helisoma duryi snails were exposed for 96 h to the respective filtrates, and their catalase and acetylcholinesterase activities were assessed. Batch mycofiltration showed iron (III) removal rates as high as 85%. Column mycofiltration showed removal rates of 94 and 31% for iron (III) and imidacloprid, respectively. Catalase activity was significantly reduced (p < 0.05) in the snails exposed to iron (III) or imidacloprid filtrates, compared to the snails exposed to the non-mycofiltered media. A significantly higher acetylcholinesterase activity was induced by iron (III) filtrates in comparison with the non-mycofiltered media (p < 0.05). There were no significant differences in acetylcholinesterase activity (p > 0.05) in the snails exposed to mycofiltered and non-mycofiltered imidacloprid media. Mycofilter characterisation using Fourier Transform Infrared Spectrophotometry revealed significant changes in transmittance intensity in the mycofilters used for the iron (III) vs the ones used for the imidacloprid solutions. Mycofiltration was found to improve water quality although iron (III) was removed more effectively than imidacloprid.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.