Carlos Gonçalves, Katrien Bouten, Pieter Dehouck, Håkan Emteborg, Joerg Stroka, Ursula Vincent, Christoph von Holst
{"title":"Determination of urea in pet feed: assessing the suitability of different analytical techniques using proficiency test data.","authors":"Carlos Gonçalves, Katrien Bouten, Pieter Dehouck, Håkan Emteborg, Joerg Stroka, Ursula Vincent, Christoph von Holst","doi":"10.1080/19440049.2023.2300741","DOIUrl":null,"url":null,"abstract":"<p><p>The determination of urea in pet feed at contaminant levels using the spectrophotometric method described in Commission Regulation (EC) No 152/2009 has been reported by several EU laboratories to lack the required selectivity. Whilst urea is not authorised as an additive in pet feed, the control of urea in pet feed is of economic importance, because the addition of urea may unlawfully increase the apparent protein content. To investigate the capabilities of different analytical techniques, a proficiency test was organised where the participants (EU official control laboratories, laboratories from the academia and private laboratories) were free to use their method of choice for analysing three dog feed test materials, two samples of which were spiked with urea. Twenty-one laboratories submitted results using the following techniques: spectrophotometry (Implementing Regulation (EC) No 152/2009), LC-MS/MS, HPLC-UV, enzymatic-colorimetry, gravimetry and an 'in-house photometric' method. Only two laboratories that used LC-MS/MS were able to quantify urea accurately in the test material containing a mass fraction of 18.9 mg kg<sup>-1</sup> whereas satisfactory results at the level of 258.9 mg kg<sup>-1</sup> were obtained by one participant that used an 'in-house photometric method' and one that used the enzymatic method, in addition to the five participants using LC-MS/MS. The technique that provided the highest success rate across the three test materials was LC-MS/MS, whereas spectrophotometry, the enzymatic-based and HPLC-UV methods led to overestimated results in addition to a dispersion of results not suitable for compliance analysis. To address the determination of urea in pet feed at low levels, a better performing method than the one described in the legislation is required.</p>","PeriodicalId":12295,"journal":{"name":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","volume":" ","pages":"249-260"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19440049.2023.2300741","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The determination of urea in pet feed at contaminant levels using the spectrophotometric method described in Commission Regulation (EC) No 152/2009 has been reported by several EU laboratories to lack the required selectivity. Whilst urea is not authorised as an additive in pet feed, the control of urea in pet feed is of economic importance, because the addition of urea may unlawfully increase the apparent protein content. To investigate the capabilities of different analytical techniques, a proficiency test was organised where the participants (EU official control laboratories, laboratories from the academia and private laboratories) were free to use their method of choice for analysing three dog feed test materials, two samples of which were spiked with urea. Twenty-one laboratories submitted results using the following techniques: spectrophotometry (Implementing Regulation (EC) No 152/2009), LC-MS/MS, HPLC-UV, enzymatic-colorimetry, gravimetry and an 'in-house photometric' method. Only two laboratories that used LC-MS/MS were able to quantify urea accurately in the test material containing a mass fraction of 18.9 mg kg-1 whereas satisfactory results at the level of 258.9 mg kg-1 were obtained by one participant that used an 'in-house photometric method' and one that used the enzymatic method, in addition to the five participants using LC-MS/MS. The technique that provided the highest success rate across the three test materials was LC-MS/MS, whereas spectrophotometry, the enzymatic-based and HPLC-UV methods led to overestimated results in addition to a dispersion of results not suitable for compliance analysis. To address the determination of urea in pet feed at low levels, a better performing method than the one described in the legislation is required.
期刊介绍:
Food Additives & Contaminants: Part A publishes original research papers and critical reviews covering analytical methodology, occurrence, persistence, safety evaluation, detoxification and regulatory control of natural and man-made additives and contaminants in the food and animal feed chain. Papers are published in the areas of food additives including flavourings, pesticide and veterinary drug residues, environmental contaminants, plant toxins, mycotoxins, marine biotoxins, trace elements, migration from food packaging, food process contaminants, adulteration, authenticity and allergenicity of foods. Papers are published on animal feed where residues and contaminants can give rise to food safety concerns. Contributions cover chemistry, biochemistry and bioavailability of these substances, factors affecting levels during production, processing, packaging and storage; the development of novel foods and processes; exposure and risk assessment.