Skin-stretch Haptic Feedback Augmentation Improves Performance in a Simulated Laparoscopic Palpation Task.

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-02-07 DOI:10.1109/TOH.2024.3363422
Charlelie Saudrais, Bernard Bayle, Marie-Aude Vitrani, Fabien Verite
{"title":"Skin-stretch Haptic Feedback Augmentation Improves Performance in a Simulated Laparoscopic Palpation Task.","authors":"Charlelie Saudrais, Bernard Bayle, Marie-Aude Vitrani, Fabien Verite","doi":"10.1109/TOH.2024.3363422","DOIUrl":null,"url":null,"abstract":"<p><p>Laparoscopic surgery brings substantial benefits to patients. However, it remains challenging for surgeons because of motion constraints and perception limitations. Notably, the perception of interactions with organs is largely compromised. This paper evaluates the effectiveness of a forearm-based skin-stretch haptic feedback system rendering surgical tool tip force. Twenty novice participants had to discern the stiffness of samples to investigate stiffness perception in a simulated laparoscopic task. The experimental protocol involved manipulating samples with three difficulty levels and testing three feedback conditions: no augmentation, visual feedback, and tactile feedback. The results demonstrate that feedback significantly enhances the success rate of laparoscopic palpation tasks. The proposed tactile feedback boosts confidence and task speed and reduces peak force and perceived workload. These benefits become even more pronounced when difficulty increases. These promising findings affirm the value of skin-stretch haptic feedback augmentation in improving performance for simulated laparoscopy tasks, paving the way for more integrated and deployable devices for the operating room.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3363422","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Laparoscopic surgery brings substantial benefits to patients. However, it remains challenging for surgeons because of motion constraints and perception limitations. Notably, the perception of interactions with organs is largely compromised. This paper evaluates the effectiveness of a forearm-based skin-stretch haptic feedback system rendering surgical tool tip force. Twenty novice participants had to discern the stiffness of samples to investigate stiffness perception in a simulated laparoscopic task. The experimental protocol involved manipulating samples with three difficulty levels and testing three feedback conditions: no augmentation, visual feedback, and tactile feedback. The results demonstrate that feedback significantly enhances the success rate of laparoscopic palpation tasks. The proposed tactile feedback boosts confidence and task speed and reduces peak force and perceived workload. These benefits become even more pronounced when difficulty increases. These promising findings affirm the value of skin-stretch haptic feedback augmentation in improving performance for simulated laparoscopy tasks, paving the way for more integrated and deployable devices for the operating room.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮肤拉伸触觉反馈增强技术提高了模拟腹腔镜触诊任务中的表现。
腹腔镜手术为患者带来了巨大的益处。然而,由于运动的限制和感知的局限性,腹腔镜手术对外科医生来说仍然具有挑战性。值得注意的是,与器官互动的感知在很大程度上受到了影响。本文评估了基于前臂的皮肤拉伸触觉反馈系统呈现手术工具尖端力的有效性。20 名新手参与者必须辨别样本的硬度,以研究模拟腹腔镜任务中的硬度感知。实验方案包括操作三个难度级别的样本和测试三种反馈条件:无增强、视觉反馈和触觉反馈。结果表明,反馈能显著提高腹腔镜触诊任务的成功率。建议的触觉反馈增强了信心和任务速度,降低了峰值力和感知工作量。当难度增加时,这些优势会更加明显。这些令人鼓舞的研究结果肯定了皮肤拉伸触觉反馈增强技术在提高模拟腹腔镜检查任务的性能方面所具有的价值,为在手术室中使用更多的集成和可部署设备铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation. Two rapid alternatives compared to the staircase method for the estimation of the vibrotactile perception threshold. Multichannel Vibrotactile Glove: Validation of a new device designed to sense vibrations. Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance. VT-SGN:Spiking Graph Neural Network for Neuromorphic Visual-Tactile Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1