Joshua A. Welsh, Deborah C. I. Goberdhan, Lorraine O'Driscoll, Edit I. Buzas, Cherie Blenkiron, Benedetta Bussolati, Houjian Cai, Dolores Di Vizio, Tom A. P. Driedonks, Uta Erdbrügger, Juan M. Falcon-Perez, Qing-Ling Fu, Andrew F. Hill, Metka Lenassi, Sai Kiang Lim, Mỹ G. Mahoney, Sujata Mohanty, Andreas Möller, Rienk Nieuwland, Takahiro Ochiya, Susmita Sahoo, Ana C. Torrecilhas, Lei Zheng, Andries Zijlstra, Sarah Abuelreich, Reem Bagabas, Paolo Bergese, Esther M. Bridges, Marco Brucale, Dylan Burger, Randy P. Carney, Emanuele Cocucci, Federico Colombo, Rossella Crescitelli, Edveena Hanser, Adrian L. Harris, Norman J. Haughey, An Hendrix, Alexander R. Ivanov, Tijana Jovanovic-Talisman, Nicole A. Kruh-Garcia, Vroniqa Ku'ulei-Lyn Faustino, Diego Kyburz, Cecilia Lässer, Kathleen M. Lennon, Jan Lötvall, Adam L. Maddox, Elena S. Martens-Uzunova, Rachel R. Mizenko, Lauren A. Newman, Andrea Ridolfi, Eva Rohde, Tatu Rojalin, Andrew Rowland, Andras Saftics, Ursula S. Sandau, Julie A. Saugstad, Faezeh Shekari, Simon Swift, Dmitry Ter-Ovanesyan, Juan P. Tosar, Zivile Useckaite, Francesco Valle, Zoltan Varga, Edwin van der Pol, Martijn J. C. van Herwijnen, Marca H. M. Wauben, Ann M. Wehman, Sarah Williams, Andrea Zendrini, Alan J. Zimmerman, MISEV Consortium, Clotilde Théry, Kenneth W. Witwer
{"title":"Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches","authors":"Joshua A. Welsh, Deborah C. I. Goberdhan, Lorraine O'Driscoll, Edit I. Buzas, Cherie Blenkiron, Benedetta Bussolati, Houjian Cai, Dolores Di Vizio, Tom A. P. Driedonks, Uta Erdbrügger, Juan M. Falcon-Perez, Qing-Ling Fu, Andrew F. Hill, Metka Lenassi, Sai Kiang Lim, Mỹ G. Mahoney, Sujata Mohanty, Andreas Möller, Rienk Nieuwland, Takahiro Ochiya, Susmita Sahoo, Ana C. Torrecilhas, Lei Zheng, Andries Zijlstra, Sarah Abuelreich, Reem Bagabas, Paolo Bergese, Esther M. Bridges, Marco Brucale, Dylan Burger, Randy P. Carney, Emanuele Cocucci, Federico Colombo, Rossella Crescitelli, Edveena Hanser, Adrian L. Harris, Norman J. Haughey, An Hendrix, Alexander R. Ivanov, Tijana Jovanovic-Talisman, Nicole A. Kruh-Garcia, Vroniqa Ku'ulei-Lyn Faustino, Diego Kyburz, Cecilia Lässer, Kathleen M. Lennon, Jan Lötvall, Adam L. Maddox, Elena S. Martens-Uzunova, Rachel R. Mizenko, Lauren A. Newman, Andrea Ridolfi, Eva Rohde, Tatu Rojalin, Andrew Rowland, Andras Saftics, Ursula S. Sandau, Julie A. Saugstad, Faezeh Shekari, Simon Swift, Dmitry Ter-Ovanesyan, Juan P. Tosar, Zivile Useckaite, Francesco Valle, Zoltan Varga, Edwin van der Pol, Martijn J. C. van Herwijnen, Marca H. M. Wauben, Ann M. Wehman, Sarah Williams, Andrea Zendrini, Alan J. Zimmerman, MISEV Consortium, Clotilde Théry, Kenneth W. Witwer","doi":"10.1002/jev2.12404","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":null,"pages":null},"PeriodicalIF":15.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12404","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12404","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
细胞外囊泡(EVs)通过其复杂的载体,可以反映其来源细胞的状态,并改变其他细胞的功能和表型。这些特征显示了强大的生物标记和治疗潜力,并引起了广泛的兴趣,有关 EVs 的科学出版物数量逐年稳步增长就是证明。在 EV 计量以及理解和应用 EV 生物学方面取得了重要进展。然而,EVs 在基础生物学到临床应用等领域的潜力仍然难以发挥,原因在于 EVs 的命名、与非囊泡细胞外颗粒的分离、表征和功能研究等方面存在挑战。为了应对这一快速发展领域的挑战和机遇,国际细胞外囊泡学会(ISEV)更新了《细胞外囊泡研究的最基本信息》,该文件首次发布于2014年,随后于2018年发布,分别为MISEV2014和MISEV2018。本文件(MISEV2023)的目标是为研究人员提供关于现有方法及其优势和局限性的最新快照,以便从细胞培养、体液和固体组织等多种来源生产、分离和表征 EVs。除了介绍 EV 研究基本原理的最新进展外,本文件还涵盖了目前正在扩展该领域边界的先进技术和方法。MISEV2023 还包括有关 EV 释放和吸收的新章节,以及对研究 EV 的体内方法的简要讨论。本文件汇集了 ISEV 专家工作组和 1000 多名研究人员的反馈意见,传达了电动汽车研究的现状,以促进有力的科学发现,推动该领域更快发展。
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.