Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M. Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T. McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F. Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R. Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.
严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)会导致2019年冠状病毒病(COVID-19),自2019年以来,全球已有700多万人因此死亡。由于高水平的IL-6与重症病例有关,因此早期评估将抗IL6抑制剂托西珠单抗作为一种潜在的治疗方法,但遗憾的是,在许多试验中,这种抑制剂未能改善存活率。此外,人们对 COVID-19 后遗症的发展知之甚少,因此需要生物标志物来了解和预测这些过程。由于细胞外囊泡(EVs)在病毒感染和免疫反应中发挥着重要作用,它们有可能成为预测和预后的生物标志物。我们从 39 名重症 COVID-19 患者中分离出了 EVs,其中 29 人接受了托珠单抗治疗,10 人被视为对照组。在治疗前住院时、治疗第 7 天和随访第 15 天采集的血液样本通过免疫印迹法评估了尖峰蛋白(S)和核头蛋白(N)的纵向表达。对动态表达进行计算,并与临床病理和实验变量进行比较。通过免疫金和成像流式细胞术验证了EV S的表达,发现其在CD9+ EV中富集。因此,在接受托西珠单抗治疗的患者中观察到了EV病毒蛋白表达的减少。此外,在抗体反应较低、高纤维蛋白原血症、呼吸功能较差、血压较高和预后较短的患者中观察到了较高的 EV S 增加。这些发现为今后研究EVs在多器官评估中的作用以及确定严重COVID-19和可能的长COVID患者的生物标志物奠定了基础。
{"title":"Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19","authors":"Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M. Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T. McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F. Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R. Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo","doi":"10.1002/jev2.70001","DOIUrl":"https://doi.org/10.1002/jev2.70001","url":null,"abstract":"<p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.
{"title":"Efficient enzyme-free isolation of brain-derived extracellular vesicles","authors":"Andreu Matamoros-Angles, Emina Karadjuzovic, Behnam Mohammadi, Feizhi Song, Santra Brenna, Susanne Caroline Meister, Bente Siebels, Hannah Voß, Carolin Seuring, Isidre Ferrer, Hartmut Schlüter, Matthias Kneussel, Hermann Clemens Altmeppen, Michaela Schweizer, Berta Puig, Mohsin Shafiq, Markus Glatzel","doi":"10.1002/jev2.70011","DOIUrl":"10.1002/jev2.70011","url":null,"abstract":"<p>Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrP<sup>C</sup>), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Margarida Viola, Maarten P. Bebelman, Renee G. C. Maas, Willemijn S. de Voogt, Frederik J. Verweij, Cor S. Seinen, Saskia C. A. de Jager, Pieter Vader, Dirk Michiel Pegtel, Joost Petrus Gerardus Sluijter
Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in the heart under homeostatic and pathological conditions, such as myocardial infarction (MI). However, the basic mechanisms driving cardiomyocyte-derived EV (CM-EV) production following stress are poorly understood. In this study, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that express NanoLuc-tetraspanin reporters. These modified hiPSC-CMs allow for quantification of tetraspanin-positive CM-EV secretion from small numbers of cells without the need for time-consuming EV isolation techniques. We subjected these cells to a panel of small molecules to study their effect on CM-EV biogenesis and secretion under basal and stress-associated conditions. We observed that EV biogenesis is context-dependent in hiPSC-CMs. Nutrient starvation decreases CM-EV secretion while hypoxia increases the production of CM-EVs in a nSmase2-dependent manner. Moreover, the inflammatory cytokine TNF-α increased CM-EV secretion through a process involving NLRP3 inflammasome activation and mTOR signalling. Here, we detailed for the first time the regulatory mechanisms of EV biogenesis in hiPSC-CMs upon MI-associated stressors.
细胞外囊泡(EVs)已成为心脏在平衡和病理条件下(如心肌梗塞(MI))进行细胞间交流的重要媒介。然而,人们对应激状态下驱动心肌细胞衍生 EV(CM-EV)产生的基本机制知之甚少。在这项研究中,我们生成了表达 NanoLuc-tetraspanin 报告的人类诱导多能干细胞衍生心肌细胞(hiPSC-CMs)。这些经过修饰的 hiPSC-CMs 可对少量细胞的四泛素阳性 CM-EV 分泌进行量化,而无需耗时的 EV 分离技术。我们将这些细胞置于一组小分子中,研究它们在基础和应激相关条件下对 CM-EV 生物发生和分泌的影响。我们观察到,在hiPSC-CMs中,EV的生物发生与环境有关。营养饥饿会减少CM-EV的分泌,而缺氧则会以依赖nSmase2的方式增加CM-EV的生成。此外,炎性细胞因子 TNF-α 通过 NLRP3 炎性体激活和 mTOR 信号传导过程增加了 CM-EV 的分泌。在此,我们首次详细阐述了在与 MI 相关的应激因素作用下,hiPSC-CMs 中 EV 生物生成的调控机制。
{"title":"Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes","authors":"Margarida Viola, Maarten P. Bebelman, Renee G. C. Maas, Willemijn S. de Voogt, Frederik J. Verweij, Cor S. Seinen, Saskia C. A. de Jager, Pieter Vader, Dirk Michiel Pegtel, Joost Petrus Gerardus Sluijter","doi":"10.1002/jev2.70000","DOIUrl":"10.1002/jev2.70000","url":null,"abstract":"<p>Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in the heart under homeostatic and pathological conditions, such as myocardial infarction (MI). However, the basic mechanisms driving cardiomyocyte-derived EV (CM-EV) production following stress are poorly understood. In this study, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that express NanoLuc-tetraspanin reporters. These modified hiPSC-CMs allow for quantification of tetraspanin-positive CM-EV secretion from small numbers of cells without the need for time-consuming EV isolation techniques. We subjected these cells to a panel of small molecules to study their effect on CM-EV biogenesis and secretion under basal and stress-associated conditions. We observed that EV biogenesis is context-dependent in hiPSC-CMs. Nutrient starvation decreases CM-EV secretion while hypoxia increases the production of CM-EVs in a nSmase2-dependent manner. Moreover, the inflammatory cytokine TNF-α increased CM-EV secretion through a process involving NLRP3 inflammasome activation and mTOR signalling. Here, we detailed for the first time the regulatory mechanisms of EV biogenesis in hiPSC-CMs upon MI-associated stressors.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Zhao, Zhi Li, Da Liu, Jiaxun Zhang, Zhicheng You, Yuzhang Shao, Hongyan Li, Jun Yang, Xiang Liu, Miaozhu Wang, Chengen Wu, Jing Chen, Jianwu Wang, Guanyi Kong, Libo Zhao
Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.
细胞外囊泡(EVs)被描述为下一代药物输送系统,因为有令人信服的证据表明,EVs 可以促进各种生物分子在细胞间的转移。装载蛋白质货物最常用的策略是通过基因融合感兴趣的蛋白质(POI)和具有高EV分拣能力的支架蛋白来实现EV的内源性工程。然而,支架蛋白的缺乏已成为阻碍这一技术推广的主要问题。在此,我们提出了新的筛选标准,放宽了候选支架蛋白的纳入要求,并最终确定了一种新的支架蛋白--PLXNA1。截短的 PLXNA1 不仅继承了全长蛋白的高 EV 分类能力,还能在外层表面和管腔区域单独或同时融合表达 POI。总之,我们的筛选标准扩大了潜在支架蛋白的范围。鉴定出的支架蛋白 PLXNA1 在开发治疗性 EV 方面显示出巨大的潜力。
{"title":"PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles","authors":"Hang Zhao, Zhi Li, Da Liu, Jiaxun Zhang, Zhicheng You, Yuzhang Shao, Hongyan Li, Jun Yang, Xiang Liu, Miaozhu Wang, Chengen Wu, Jing Chen, Jianwu Wang, Guanyi Kong, Libo Zhao","doi":"10.1002/jev2.70012","DOIUrl":"10.1002/jev2.70012","url":null,"abstract":"<p>Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Tordoff, Jillian Allen, Katya Elgart, Ahmed Elsherbini, Vrinda Kalia, Haotian Wu, Erden Eren, Dimitrios Kapogiannis, Olesia Gololobova, Kenneth Witwer, Olga Volpert, Erez Eitan
Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids. Tetraspanins CD9, CD63, and CD81 are common and abundant EV markers. However, their relative enrichment (profile) on EVs of specific cellular origins is not fully elucidated. We introduce LuminEV, a novel version of the Luminex assay for the multiplexed analysis of EV surface proteins. Optimized LuminEV reagents enable direct, specific, and sensitive measurements of EV markers in biofluids and in culture supernatants, bypassing EV isolation step. LuminEV assay for CD9, CD63, and CD81 was validated by comparing simplex and multiplex measurements, establishing linearity, spike-in recovery, inter- and intra-assay precision, and reproducibility between operators. LuminEV measurements of CD9, CD63, and CD81 in conditioned media from 15 cell lines revealed strong variations between cell types and showed high sensitivity, which enabled EV detection without prior concentration. Using tetraspanin levels as a readout, we noted suppression and induction of EV release from the cultured cells by GW6869 and monensin. Measurement of EV CD9, CD63, and CD81 in blood plasma from 70 disease-free donors showed respective abundance of 72, 16, and 12%. CD63 displayed weak, albeit significant, negative correlation with age and was slightly lower in female samples. The assay was then used to detect cell type-specific EV surface markers, including CD235a (erythrocytes), GAP43 (neurons), and CD68 (macrophages), and to detect differences in tetraspanin profiles between healthy and diseased donors. In summary, LuminEV offers robust and sensitive approach for multiplexed assessment of EV surface proteins, to facilitate the research into EV biology, biomarker, and therapeutic applications.
小膜细胞外囊泡(EV)含有来自母细胞的蛋白质和核酸。暴露在 EV 表面的蛋白质由细胞来源和生物生成途径决定。为了更好地了解 EV 的起源和功能,开发揭示培养上清液和生物流体中异质 EV 群体表面蛋白质组成的方法非常重要。四蛋白 CD9、CD63 和 CD81 是常见且丰富的 EV 标记。然而,它们在特定细胞来源的 EV 上的相对富集(概况)尚未完全阐明。我们推出了 LuminEV,这是一种用于 EV 表面蛋白多重分析的新型 Luminex 检测方法。经过优化的 LuminEV 试剂可直接、特异、灵敏地测定生物流体和培养上清液中的 EV 标记物,从而绕过 EV 分离步骤。LuminEV 检测 CD9、CD63 和 CD81 的方法通过比较单倍和多倍测量进行了验证,确定了线性、尖峰回收率、检测间和检测内精度以及操作者之间的可重复性。LuminEV 对 15 种细胞系的条件培养基中 CD9、CD63 和 CD81 的测量结果表明,不同细胞类型之间的差异很大,而且灵敏度很高,无需事先浓缩即可检测到 EV。利用四泛素水平作为读数,我们注意到 GW6869 和莫能菌素抑制和诱导了培养细胞中的 EV 释放。对 70 名无病捐献者血浆中的 EV CD9、CD63 和 CD81 的测量显示,其丰度分别为 72%、16% 和 12%。CD63 与年龄呈微弱但显著的负相关,在女性样本中略低。然后,该测定法被用来检测细胞类型特异性的 EV 表面标记物,包括 CD235a(红细胞)、GAP43(神经元)和 CD68(巨噬细胞),并检测健康供体和患病供体之间四泛素谱的差异。总之,LuminEV 为 EV 表面蛋白的多重评估提供了稳健而灵敏的方法,有助于 EV 生物学、生物标记和治疗应用的研究。
{"title":"A novel multiplexed immunoassay for surface-exposed proteins in plasma extracellular vesicles","authors":"Emma Tordoff, Jillian Allen, Katya Elgart, Ahmed Elsherbini, Vrinda Kalia, Haotian Wu, Erden Eren, Dimitrios Kapogiannis, Olesia Gololobova, Kenneth Witwer, Olga Volpert, Erez Eitan","doi":"10.1002/jev2.70007","DOIUrl":"https://doi.org/10.1002/jev2.70007","url":null,"abstract":"<p>Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids. Tetraspanins CD9, CD63, and CD81 are common and abundant EV markers. However, their relative enrichment (profile) on EVs of specific cellular origins is not fully elucidated. We introduce LuminEV, a novel version of the Luminex assay for the multiplexed analysis of EV surface proteins. Optimized LuminEV reagents enable direct, specific, and sensitive measurements of EV markers in biofluids and in culture supernatants, bypassing EV isolation step. LuminEV assay for CD9, CD63, and CD81 was validated by comparing simplex and multiplex measurements, establishing linearity, spike-in recovery, inter- and intra-assay precision, and reproducibility between operators. LuminEV measurements of CD9, CD63, and CD81 in conditioned media from 15 cell lines revealed strong variations between cell types and showed high sensitivity, which enabled EV detection without prior concentration. Using tetraspanin levels as a readout, we noted suppression and induction of EV release from the cultured cells by GW6869 and monensin. Measurement of EV CD9, CD63, and CD81 in blood plasma from 70 disease-free donors showed respective abundance of 72, 16, and 12%. CD63 displayed weak, albeit significant, negative correlation with age and was slightly lower in female samples. The assay was then used to detect cell type-specific EV surface markers, including CD235a (erythrocytes), GAP43 (neurons), and CD68 (macrophages), and to detect differences in tetraspanin profiles between healthy and diseased donors. In summary, LuminEV offers robust and sensitive approach for multiplexed assessment of EV surface proteins, to facilitate the research into EV biology, biomarker, and therapeutic applications.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., & Bui, J. D. (2024). MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. Journal of Extracellular Vesicles, 13, e12515. https://doi.org/10.1002/jev2.12515
In the originally-published article, author Felippe Mousovich-Neto's name was incorrectly given as Felippe Neto. The online version of the article has been corrected.
We apologize for this error.
Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., & Bui, J. D. (2024).细胞外囊泡中的 MAP 激酶激酶 1 (MEK1) 通过促进抗肿瘤免疫抑制肿瘤生长。Journal of Extracellular Vesicles, 13, e12515. https://doi.org/10.1002/jev2.12515In 在最初发表的文章中,作者 Felippe Mousovich-Neto 的名字被误写为 Felippe Neto。我们对这一错误表示歉意。
{"title":"Correction to MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity","authors":"","doi":"10.1002/jev2.70010","DOIUrl":"https://doi.org/10.1002/jev2.70010","url":null,"abstract":"<p>Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., & Bui, J. D. (2024). MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. <i>Journal of Extracellular Vesicles</i>, 13, e12515. https://doi.org/10.1002/jev2.12515</p><p>In the originally-published article, author Felippe Mousovich-Neto's name was incorrectly given as Felippe Neto. The online version of the article has been corrected.</p><p>We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyu Wei, Mengmeng Liang, Min Deng, Ji Zheng, Fei Luo, Qinyu Ma
The identification of both autophagy-related material degradation and unconventional secretion has paved the way for significant breakthroughs linking autophagy to a plethora of physiological processes and disease conditions. However, the mechanisms that coordinate these two pathways remain elusive. Here, we demonstrate that a switch from the lysosomal degradation to a secretory autophagy pathway is governed by protein tyrosine phosphatase 1B (PTP1B, encoded by PTPN1). Dephosphorylation at two tyrosine residues of syntaxin17 (STX17) by PTP1B reduces autophagosome-lysosome fusion while switching the cells to a secretory autophagy pathway. Both PTP1B overexpression and tumour-derived extracellular vesicles (EVs) can activate the secretory autophagy pathway in osteoblasts. Moreover, we demonstrate that osteoblastic LC3+ EVs, generated via the secretory autophagy pathway, are the primary contributor to tumour-associated bone remodelling in prostate cancer. Depletion of tumour-derived EVs secretion or genetic ablation of osteoblastic PTP1B rescues aberrant bone remodelling and lesions, highlighting the relevance between LC3+ EVs and the formation of bone metastatic niche. Our results reveal the significance of tumour-regulated PTP1B in the fate decision of autophagosomes, and propose a role ofLC3+ EVs in shaping the bone metastatic niche.
{"title":"A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer","authors":"Xiaoyu Wei, Mengmeng Liang, Min Deng, Ji Zheng, Fei Luo, Qinyu Ma","doi":"10.1002/jev2.70002","DOIUrl":"10.1002/jev2.70002","url":null,"abstract":"<p>The identification of both autophagy-related material degradation and unconventional secretion has paved the way for significant breakthroughs linking autophagy to a plethora of physiological processes and disease conditions. However, the mechanisms that coordinate these two pathways remain elusive. Here, we demonstrate that a switch from the lysosomal degradation to a secretory autophagy pathway is governed by protein tyrosine phosphatase 1B (PTP1B, encoded by <i>PTPN1</i>). Dephosphorylation at two tyrosine residues of syntaxin17 (STX17) by PTP1B reduces autophagosome-lysosome fusion while switching the cells to a secretory autophagy pathway. Both PTP1B overexpression and tumour-derived extracellular vesicles (EVs) can activate the secretory autophagy pathway in osteoblasts. Moreover, we demonstrate that osteoblastic LC3+ EVs, generated via the secretory autophagy pathway, are the primary contributor to tumour-associated bone remodelling in prostate cancer. Depletion of tumour-derived EVs secretion or genetic ablation of osteoblastic PTP1B rescues aberrant bone remodelling and lesions, highlighting the relevance between LC3+ EVs and the formation of bone metastatic niche. Our results reveal the significance of tumour-regulated PTP1B in the fate decision of autophagosomes, and propose a role ofLC3+ EVs in shaping the bone metastatic niche.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leelavathi N. Madhu, Maheedhar Kodali, Raghavendra Upadhya, Shama Rao, Yogish Somayaji, Sahithi Attaluri, Bing Shuai, Maha Kirmani, Shreyan Gupta, Nathaniel Maness, Xiaolan Rao, James J. Cai, Ashok K. Shetty
As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.
{"title":"Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease","authors":"Leelavathi N. Madhu, Maheedhar Kodali, Raghavendra Upadhya, Shama Rao, Yogish Somayaji, Sahithi Attaluri, Bing Shuai, Maha Kirmani, Shreyan Gupta, Nathaniel Maness, Xiaolan Rao, James J. Cai, Ashok K. Shetty","doi":"10.1002/jev2.12519","DOIUrl":"https://doi.org/10.1002/jev2.12519","url":null,"abstract":"<p>As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.
严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)会导致2019年冠状病毒病(COVID-19),自2019年以来,全球已有700多万人因此死亡。由于高水平的IL-6与重症病例有关,因此早期评估将抗IL6抑制剂托西珠单抗作为一种潜在的治疗方法,但遗憾的是,在许多试验中,这种抑制剂未能改善存活率。此外,人们对 COVID-19 后遗症的发展知之甚少,因此需要生物标志物来了解和预测这些过程。由于细胞外囊泡(EVs)在病毒感染和免疫反应中发挥着重要作用,它们有可能成为预测和预后的生物标志物。我们从 39 名重症 COVID-19 患者中分离出了 EVs,其中 29 人接受了托珠单抗治疗,10 人被视为对照组。在治疗前住院时、治疗第 7 天和随访第 15 天采集的血液样本通过免疫印迹法评估了尖峰蛋白(S)和核头蛋白(N)的纵向表达。对动态表达进行计算,并与临床病理和实验变量进行比较。通过免疫金和成像流式细胞术验证了EV S的表达,发现其在CD9+ EV中富集。因此,在接受托西珠单抗治疗的患者中观察到了EV病毒蛋白表达的减少。此外,在抗体反应较低、高纤维蛋白原血症、呼吸功能较差、血压较高和预后较短的患者中观察到了较高的 EV S 增加。这些发现为今后研究EVs在多器官评估中的作用以及确定严重COVID-19和可能的长COVID患者的生物标志物奠定了基础。
{"title":"Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19.","authors":"Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo","doi":"10.1002/jev2.70001","DOIUrl":"10.1002/jev2.70001","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":"e70001"},"PeriodicalIF":15.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.
{"title":"Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry","authors":"Fuli Zhang, Xin Lu, Xi Zhu, Ziwen Yu, Weiliang Xia, Xunbin Wei","doi":"10.1002/jev2.70003","DOIUrl":"10.1002/jev2.70003","url":null,"abstract":"<p>Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}