首页 > 最新文献

Journal of Extracellular Vesicles最新文献

英文 中文
Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19 含有 SARS-CoV-2 蛋白质的细胞外囊泡与严重 COVID-19 患者的多器官功能障碍和预后恶化有关
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-19 DOI: 10.1002/jev2.70001
Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M. Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T. McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F. Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R. Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.

严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)会导致2019年冠状病毒病(COVID-19),自2019年以来,全球已有700多万人因此死亡。由于高水平的IL-6与重症病例有关,因此早期评估将抗IL6抑制剂托西珠单抗作为一种潜在的治疗方法,但遗憾的是,在许多试验中,这种抑制剂未能改善存活率。此外,人们对 COVID-19 后遗症的发展知之甚少,因此需要生物标志物来了解和预测这些过程。由于细胞外囊泡(EVs)在病毒感染和免疫反应中发挥着重要作用,它们有可能成为预测和预后的生物标志物。我们从 39 名重症 COVID-19 患者中分离出了 EVs,其中 29 人接受了托珠单抗治疗,10 人被视为对照组。在治疗前住院时、治疗第 7 天和随访第 15 天采集的血液样本通过免疫印迹法评估了尖峰蛋白(S)和核头蛋白(N)的纵向表达。对动态表达进行计算,并与临床病理和实验变量进行比较。通过免疫金和成像流式细胞术验证了EV S的表达,发现其在CD9+ EV中富集。因此,在接受托西珠单抗治疗的患者中观察到了EV病毒蛋白表达的减少。此外,在抗体反应较低、高纤维蛋白原血症、呼吸功能较差、血压较高和预后较短的患者中观察到了较高的 EV S 增加。这些发现为今后研究EVs在多器官评估中的作用以及确定严重COVID-19和可能的长COVID患者的生物标志物奠定了基础。
{"title":"Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19","authors":"Diego de Miguel-Perez,&nbsp;Marisol Arroyo-Hernandez,&nbsp;Sabrina La Salvia,&nbsp;Muthukumar Gunasekaran,&nbsp;Edward M. Pickering,&nbsp;Stephanie Avila,&nbsp;Etse Gebru,&nbsp;Eduardo Becerril-Vargas,&nbsp;Sergio Monraz-Perez,&nbsp;Kapil Saharia,&nbsp;Alison Grazioli,&nbsp;Michael T. McCurdy,&nbsp;Matthew Frieman,&nbsp;Lisa Miorin,&nbsp;Alessandro Russo,&nbsp;Andrés F. Cardona,&nbsp;Adolfo García-Sastre,&nbsp;Sunjay Kaushal,&nbsp;Fred R. Hirsch,&nbsp;Djordje Atanackovic,&nbsp;Susmita Sahoo,&nbsp;Oscar Arrieta,&nbsp;Christian Rolfo","doi":"10.1002/jev2.70001","DOIUrl":"https://doi.org/10.1002/jev2.70001","url":null,"abstract":"<p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient enzyme-free isolation of brain-derived extracellular vesicles 高效无酶分离脑源性细胞外囊泡。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-07 DOI: 10.1002/jev2.70011
Andreu Matamoros-Angles, Emina Karadjuzovic, Behnam Mohammadi, Feizhi Song, Santra Brenna, Susanne Caroline Meister, Bente Siebels, Hannah Voß, Carolin Seuring, Isidre Ferrer, Hartmut Schlüter, Matthias Kneussel, Hermann Clemens Altmeppen, Michaela Schweizer, Berta Puig, Mohsin Shafiq, Markus Glatzel

Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrPC), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.

作为神经退行性疾病的病理介质和潜在诊断工具,细胞外囊泡(EVs)已受到广泛关注。然而,从组织中分离脑源性EVs(BDEVs)仍然具有挑战性,通常涉及酶消化步骤,可能会损害EV蛋白的完整性和整体功能。在这里,我们描述了常用于 BDEV 分离的胶原酶消化会对脑组织匀浆和细胞衍生 EVs 中的 EV 相关蛋白产生不希望的蛋白裂解。为了避免这种影响,我们研究了用较少量的胶原酶或不用任何蛋白酶分离 BDEV 的可能性。对从小鼠和人类样本(包括雌性和雄性样本)中分离出的 BDEV 进行表征后发现,这两种方法都能分离出具有特征性形态和大小分布的 BDEV。然而,我们发现即使是轻微的酶解也会诱导关键的 BDEV 标记(如 Flotillin-1、CD81 和细胞朊病毒蛋白 (PrPC))进行 "人工 "蛋白水解处理,而避免酶处理则能完全保证它们的完整性。我们发现,非酶切分离的 BDEV 与酶切分离的 BDEV 在 mRNA 和蛋白质含量上没有重大差异,这表明这两种方法纯化的 BDEV 群体是相同的。耐人寻味的是,高尔基体标志物 GM130 信号的缺乏(通常被称为 EV 制剂中的污染指示物(或阴性标志物))似乎是酶解的结果,而不是 BDEV 样品中确实没有这种标志物。总之,我们的研究表明,从脑组织中非酶分离 EVs 是可行的,它避免了对蛋白质的人为剪切,同时获得了较高的 BDEV 产率和纯度。该方案将有助于在接近生理的环境中了解 BDEV 及其相关蛋白的功能,从而开辟新的研究方法。
{"title":"Efficient enzyme-free isolation of brain-derived extracellular vesicles","authors":"Andreu Matamoros-Angles,&nbsp;Emina Karadjuzovic,&nbsp;Behnam Mohammadi,&nbsp;Feizhi Song,&nbsp;Santra Brenna,&nbsp;Susanne Caroline Meister,&nbsp;Bente Siebels,&nbsp;Hannah Voß,&nbsp;Carolin Seuring,&nbsp;Isidre Ferrer,&nbsp;Hartmut Schlüter,&nbsp;Matthias Kneussel,&nbsp;Hermann Clemens Altmeppen,&nbsp;Michaela Schweizer,&nbsp;Berta Puig,&nbsp;Mohsin Shafiq,&nbsp;Markus Glatzel","doi":"10.1002/jev2.70011","DOIUrl":"10.1002/jev2.70011","url":null,"abstract":"<p>Extracellular vesicles (EVs) have gained significant attention as pathology mediators and potential diagnostic tools for neurodegenerative diseases. However, isolation of brain-derived EVs (BDEVs) from tissue remains challenging, often involving enzymatic digestion steps that may compromise the integrity of EV proteins and overall functionality. Here, we describe that collagenase digestion, commonly used for BDEV isolation, produces undesired protein cleavage of EV-associated proteins in brain tissue homogenates and cell-derived EVs. In order to avoid this effect, we studied the possibility of isolating BDEVs with a reduced amount of collagenase or without any protease. Characterization of the isolated BDEVs from mouse and human samples (both female and male) revealed their characteristic morphology and size distribution with both approaches. However, we show that even minor enzymatic digestion induces ‘artificial’ proteolytic processing in key BDEV markers, such as Flotillin-1, CD81, and the cellular prion protein (PrP<sup>C</sup>), whereas avoiding enzymatic treatment completely preserves their integrity. We found no major differences in mRNA and protein content between non-enzymatically and enzymatically isolated BDEVs, suggesting that the same BDEV populations are purified with both approaches. Intriguingly, the lack of Golgi marker GM130 signal, often referred to as contamination indicator (or negative marker) in EV preparations, seems to result from enzymatic digestion rather than from its actual absence in BDEV samples. Overall, we show that non-enzymatic isolation of EVs from brain tissue is possible and avoids artificial pruning of proteins while achieving an overall high BDEV yield and purity. This protocol will help to understand the functions of BDEV and their associated proteins in a near-physiological setting, thus opening new research approaches.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes 缺氧和 TNF-α 可调节人诱导多能干细胞衍生心肌细胞细胞外囊泡的释放。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-07 DOI: 10.1002/jev2.70000
Margarida Viola, Maarten P. Bebelman, Renee G. C. Maas, Willemijn S. de Voogt, Frederik J. Verweij, Cor S. Seinen, Saskia C. A. de Jager, Pieter Vader, Dirk Michiel Pegtel, Joost Petrus Gerardus Sluijter

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in the heart under homeostatic and pathological conditions, such as myocardial infarction (MI). However, the basic mechanisms driving cardiomyocyte-derived EV (CM-EV) production following stress are poorly understood. In this study, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that express NanoLuc-tetraspanin reporters. These modified hiPSC-CMs allow for quantification of tetraspanin-positive CM-EV secretion from small numbers of cells without the need for time-consuming EV isolation techniques. We subjected these cells to a panel of small molecules to study their effect on CM-EV biogenesis and secretion under basal and stress-associated conditions. We observed that EV biogenesis is context-dependent in hiPSC-CMs. Nutrient starvation decreases CM-EV secretion while hypoxia increases the production of CM-EVs in a nSmase2-dependent manner. Moreover, the inflammatory cytokine TNF-α increased CM-EV secretion through a process involving NLRP3 inflammasome activation and mTOR signalling. Here, we detailed for the first time the regulatory mechanisms of EV biogenesis in hiPSC-CMs upon MI-associated stressors.

细胞外囊泡(EVs)已成为心脏在平衡和病理条件下(如心肌梗塞(MI))进行细胞间交流的重要媒介。然而,人们对应激状态下驱动心肌细胞衍生 EV(CM-EV)产生的基本机制知之甚少。在这项研究中,我们生成了表达 NanoLuc-tetraspanin 报告的人类诱导多能干细胞衍生心肌细胞(hiPSC-CMs)。这些经过修饰的 hiPSC-CMs 可对少量细胞的四泛素阳性 CM-EV 分泌进行量化,而无需耗时的 EV 分离技术。我们将这些细胞置于一组小分子中,研究它们在基础和应激相关条件下对 CM-EV 生物发生和分泌的影响。我们观察到,在hiPSC-CMs中,EV的生物发生与环境有关。营养饥饿会减少CM-EV的分泌,而缺氧则会以依赖nSmase2的方式增加CM-EV的生成。此外,炎性细胞因子 TNF-α 通过 NLRP3 炎性体激活和 mTOR 信号传导过程增加了 CM-EV 的分泌。在此,我们首次详细阐述了在与 MI 相关的应激因素作用下,hiPSC-CMs 中 EV 生物生成的调控机制。
{"title":"Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes","authors":"Margarida Viola,&nbsp;Maarten P. Bebelman,&nbsp;Renee G. C. Maas,&nbsp;Willemijn S. de Voogt,&nbsp;Frederik J. Verweij,&nbsp;Cor S. Seinen,&nbsp;Saskia C. A. de Jager,&nbsp;Pieter Vader,&nbsp;Dirk Michiel Pegtel,&nbsp;Joost Petrus Gerardus Sluijter","doi":"10.1002/jev2.70000","DOIUrl":"10.1002/jev2.70000","url":null,"abstract":"<p>Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in the heart under homeostatic and pathological conditions, such as myocardial infarction (MI). However, the basic mechanisms driving cardiomyocyte-derived EV (CM-EV) production following stress are poorly understood. In this study, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that express NanoLuc-tetraspanin reporters. These modified hiPSC-CMs allow for quantification of tetraspanin-positive CM-EV secretion from small numbers of cells without the need for time-consuming EV isolation techniques. We subjected these cells to a panel of small molecules to study their effect on CM-EV biogenesis and secretion under basal and stress-associated conditions. We observed that EV biogenesis is context-dependent in hiPSC-CMs. Nutrient starvation decreases CM-EV secretion while hypoxia increases the production of CM-EVs in a nSmase2-dependent manner. Moreover, the inflammatory cytokine TNF-α increased CM-EV secretion through a process involving NLRP3 inflammasome activation and mTOR signalling. Here, we detailed for the first time the regulatory mechanisms of EV biogenesis in hiPSC-CMs upon MI-associated stressors.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles PlexinA1(PLXNA1)作为细胞外囊泡工程的新型支架蛋白。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-07 DOI: 10.1002/jev2.70012
Hang Zhao, Zhi Li, Da Liu, Jiaxun Zhang, Zhicheng You, Yuzhang Shao, Hongyan Li, Jun Yang, Xiang Liu, Miaozhu Wang, Chengen Wu, Jing Chen, Jianwu Wang, Guanyi Kong, Libo Zhao

Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.

细胞外囊泡(EVs)被描述为下一代药物输送系统,因为有令人信服的证据表明,EVs 可以促进各种生物分子在细胞间的转移。装载蛋白质货物最常用的策略是通过基因融合感兴趣的蛋白质(POI)和具有高EV分拣能力的支架蛋白来实现EV的内源性工程。然而,支架蛋白的缺乏已成为阻碍这一技术推广的主要问题。在此,我们提出了新的筛选标准,放宽了候选支架蛋白的纳入要求,并最终确定了一种新的支架蛋白--PLXNA1。截短的 PLXNA1 不仅继承了全长蛋白的高 EV 分类能力,还能在外层表面和管腔区域单独或同时融合表达 POI。总之,我们的筛选标准扩大了潜在支架蛋白的范围。鉴定出的支架蛋白 PLXNA1 在开发治疗性 EV 方面显示出巨大的潜力。
{"title":"PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles","authors":"Hang Zhao,&nbsp;Zhi Li,&nbsp;Da Liu,&nbsp;Jiaxun Zhang,&nbsp;Zhicheng You,&nbsp;Yuzhang Shao,&nbsp;Hongyan Li,&nbsp;Jun Yang,&nbsp;Xiang Liu,&nbsp;Miaozhu Wang,&nbsp;Chengen Wu,&nbsp;Jing Chen,&nbsp;Jianwu Wang,&nbsp;Guanyi Kong,&nbsp;Libo Zhao","doi":"10.1002/jev2.70012","DOIUrl":"10.1002/jev2.70012","url":null,"abstract":"<p>Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel multiplexed immunoassay for surface-exposed proteins in plasma extracellular vesicles 血浆细胞外囊泡中表面暴露蛋白质的新型多重免疫测定法
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1002/jev2.70007
Emma Tordoff, Jillian Allen, Katya Elgart, Ahmed Elsherbini, Vrinda Kalia, Haotian Wu, Erden Eren, Dimitrios Kapogiannis, Olesia Gololobova, Kenneth Witwer, Olga Volpert, Erez Eitan

Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids. Tetraspanins CD9, CD63, and CD81 are common and abundant EV markers. However, their relative enrichment (profile) on EVs of specific cellular origins is not fully elucidated. We introduce LuminEV, a novel version of the Luminex assay for the multiplexed analysis of EV surface proteins. Optimized LuminEV reagents enable direct, specific, and sensitive measurements of EV markers in biofluids and in culture supernatants, bypassing EV isolation step. LuminEV assay for CD9, CD63, and CD81 was validated by comparing simplex and multiplex measurements, establishing linearity, spike-in recovery, inter- and intra-assay precision, and reproducibility between operators. LuminEV measurements of CD9, CD63, and CD81 in conditioned media from 15 cell lines revealed strong variations between cell types and showed high sensitivity, which enabled EV detection without prior concentration. Using tetraspanin levels as a readout, we noted suppression and induction of EV release from the cultured cells by GW6869 and monensin. Measurement of EV CD9, CD63, and CD81 in blood plasma from 70 disease-free donors showed respective abundance of 72, 16, and 12%. CD63 displayed weak, albeit significant, negative correlation with age and was slightly lower in female samples. The assay was then used to detect cell type-specific EV surface markers, including CD235a (erythrocytes), GAP43 (neurons), and CD68 (macrophages), and to detect differences in tetraspanin profiles between healthy and diseased donors. In summary, LuminEV offers robust and sensitive approach for multiplexed assessment of EV surface proteins, to facilitate the research into EV biology, biomarker, and therapeutic applications.

小膜细胞外囊泡(EV)含有来自母细胞的蛋白质和核酸。暴露在 EV 表面的蛋白质由细胞来源和生物生成途径决定。为了更好地了解 EV 的起源和功能,开发揭示培养上清液和生物流体中异质 EV 群体表面蛋白质组成的方法非常重要。四蛋白 CD9、CD63 和 CD81 是常见且丰富的 EV 标记。然而,它们在特定细胞来源的 EV 上的相对富集(概况)尚未完全阐明。我们推出了 LuminEV,这是一种用于 EV 表面蛋白多重分析的新型 Luminex 检测方法。经过优化的 LuminEV 试剂可直接、特异、灵敏地测定生物流体和培养上清液中的 EV 标记物,从而绕过 EV 分离步骤。LuminEV 检测 CD9、CD63 和 CD81 的方法通过比较单倍和多倍测量进行了验证,确定了线性、尖峰回收率、检测间和检测内精度以及操作者之间的可重复性。LuminEV 对 15 种细胞系的条件培养基中 CD9、CD63 和 CD81 的测量结果表明,不同细胞类型之间的差异很大,而且灵敏度很高,无需事先浓缩即可检测到 EV。利用四泛素水平作为读数,我们注意到 GW6869 和莫能菌素抑制和诱导了培养细胞中的 EV 释放。对 70 名无病捐献者血浆中的 EV CD9、CD63 和 CD81 的测量显示,其丰度分别为 72%、16% 和 12%。CD63 与年龄呈微弱但显著的负相关,在女性样本中略低。然后,该测定法被用来检测细胞类型特异性的 EV 表面标记物,包括 CD235a(红细胞)、GAP43(神经元)和 CD68(巨噬细胞),并检测健康供体和患病供体之间四泛素谱的差异。总之,LuminEV 为 EV 表面蛋白的多重评估提供了稳健而灵敏的方法,有助于 EV 生物学、生物标记和治疗应用的研究。
{"title":"A novel multiplexed immunoassay for surface-exposed proteins in plasma extracellular vesicles","authors":"Emma Tordoff,&nbsp;Jillian Allen,&nbsp;Katya Elgart,&nbsp;Ahmed Elsherbini,&nbsp;Vrinda Kalia,&nbsp;Haotian Wu,&nbsp;Erden Eren,&nbsp;Dimitrios Kapogiannis,&nbsp;Olesia Gololobova,&nbsp;Kenneth Witwer,&nbsp;Olga Volpert,&nbsp;Erez Eitan","doi":"10.1002/jev2.70007","DOIUrl":"https://doi.org/10.1002/jev2.70007","url":null,"abstract":"<p>Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids. Tetraspanins CD9, CD63, and CD81 are common and abundant EV markers. However, their relative enrichment (profile) on EVs of specific cellular origins is not fully elucidated. We introduce LuminEV, a novel version of the Luminex assay for the multiplexed analysis of EV surface proteins. Optimized LuminEV reagents enable direct, specific, and sensitive measurements of EV markers in biofluids and in culture supernatants, bypassing EV isolation step. LuminEV assay for CD9, CD63, and CD81 was validated by comparing simplex and multiplex measurements, establishing linearity, spike-in recovery, inter- and intra-assay precision, and reproducibility between operators. LuminEV measurements of CD9, CD63, and CD81 in conditioned media from 15 cell lines revealed strong variations between cell types and showed high sensitivity, which enabled EV detection without prior concentration. Using tetraspanin levels as a readout, we noted suppression and induction of EV release from the cultured cells by GW6869 and monensin. Measurement of EV CD9, CD63, and CD81 in blood plasma from 70 disease-free donors showed respective abundance of 72, 16, and 12%. CD63 displayed weak, albeit significant, negative correlation with age and was slightly lower in female samples. The assay was then used to detect cell type-specific EV surface markers, including CD235a (erythrocytes), GAP43 (neurons), and CD68 (macrophages), and to detect differences in tetraspanin profiles between healthy and diseased donors. In summary, LuminEV offers robust and sensitive approach for multiplexed assessment of EV surface proteins, to facilitate the research into EV biology, biomarker, and therapeutic applications.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity 校正细胞外囊泡内的 MAP 激酶 1 (MEK1) 可通过促进抗肿瘤免疫抑制肿瘤生长
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1002/jev2.70010

Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., & Bui, J. D. (2024). MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. Journal of Extracellular Vesicles, 13, e12515. https://doi.org/10.1002/jev2.12515

In the originally-published article, author Felippe Mousovich-Neto's name was incorrectly given as Felippe Neto. The online version of the article has been corrected.

We apologize for this error.

Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., & Bui, J. D. (2024).细胞外囊泡中的 MAP 激酶激酶 1 (MEK1) 通过促进抗肿瘤免疫抑制肿瘤生长。Journal of Extracellular Vesicles, 13, e12515. https://doi.org/10.1002/jev2.12515In 在最初发表的文章中,作者 Felippe Mousovich-Neto 的名字被误写为 Felippe Neto。我们对这一错误表示歉意。
{"title":"Correction to MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity","authors":"","doi":"10.1002/jev2.70010","DOIUrl":"https://doi.org/10.1002/jev2.70010","url":null,"abstract":"<p>Searles, S. C., Chen, W.-S., Yee, J. D., Lee, P., Lee, C. K., Caron, C., Mousovich-Neto, F., Matei, I., Lyden, D., &amp; Bui, J. D. (2024). MAP kinase kinase 1 (MEK1) within extracellular vesicles inhibits tumour growth by promoting anti-tumour immunity. <i>Journal of Extracellular Vesicles</i>, 13, e12515. https://doi.org/10.1002/jev2.12515</p><p>In the originally-published article, author Felippe Mousovich-Neto's name was incorrectly given as Felippe Neto. The online version of the article has been corrected.</p><p>We apologize for this error.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer 从溶酶体降解到分泌型自噬的转换启动了前列腺癌的成骨性骨转移。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1002/jev2.70002
Xiaoyu Wei, Mengmeng Liang, Min Deng, Ji Zheng, Fei Luo, Qinyu Ma

The identification of both autophagy-related material degradation and unconventional secretion has paved the way for significant breakthroughs linking autophagy to a plethora of physiological processes and disease conditions. However, the mechanisms that coordinate these two pathways remain elusive. Here, we demonstrate that a switch from the lysosomal degradation to a secretory autophagy pathway is governed by protein tyrosine phosphatase 1B (PTP1B, encoded by PTPN1). Dephosphorylation at two tyrosine residues of syntaxin17 (STX17) by PTP1B reduces autophagosome-lysosome fusion while switching the cells to a secretory autophagy pathway. Both PTP1B overexpression and tumour-derived extracellular vesicles (EVs) can activate the secretory autophagy pathway in osteoblasts. Moreover, we demonstrate that osteoblastic LC3+ EVs, generated via the secretory autophagy pathway, are the primary contributor to tumour-associated bone remodelling in prostate cancer. Depletion of tumour-derived EVs secretion or genetic ablation of osteoblastic PTP1B rescues aberrant bone remodelling and lesions, highlighting the relevance between LC3+ EVs and the formation of bone metastatic niche. Our results reveal the significance of tumour-regulated PTP1B in the fate decision of autophagosomes, and propose a role ofLC3+ EVs in shaping the bone metastatic niche.

自噬相关物质降解和非常规分泌的发现,为自噬与大量生理过程和疾病相关的重大突破铺平了道路。然而,协调这两种途径的机制仍然难以捉摸。在这里,我们证明了从溶酶体降解到分泌型自噬途径的转换是由蛋白酪氨酸磷酸酶 1B (PTP1B,由 PTPN1 编码)控制的。PTP1B使syntaxin17(STX17)的两个酪氨酸残基去磷酸化会减少自噬体与溶酶体的融合,同时使细胞转向分泌型自噬途径。PTP1B过表达和肿瘤衍生的细胞外囊泡(EVs)都能激活成骨细胞的分泌性自噬途径。此外,我们还证明了通过分泌性自噬途径产生的成骨细胞 LC3+ EVs 是前列腺癌肿瘤相关骨重塑的主要因素。消耗肿瘤衍生的EVs分泌或基因消减成骨细胞的PTP1B可挽救异常的骨重塑和病变,这突出了LC3+ EVs与骨转移龛形成之间的相关性。我们的研究结果揭示了肿瘤调控的 PTP1B 在自噬体命运决定中的重要作用,并提出了 LC3+ EVs 在形成骨转移龛中的作用。
{"title":"A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer","authors":"Xiaoyu Wei,&nbsp;Mengmeng Liang,&nbsp;Min Deng,&nbsp;Ji Zheng,&nbsp;Fei Luo,&nbsp;Qinyu Ma","doi":"10.1002/jev2.70002","DOIUrl":"10.1002/jev2.70002","url":null,"abstract":"<p>The identification of both autophagy-related material degradation and unconventional secretion has paved the way for significant breakthroughs linking autophagy to a plethora of physiological processes and disease conditions. However, the mechanisms that coordinate these two pathways remain elusive. Here, we demonstrate that a switch from the lysosomal degradation to a secretory autophagy pathway is governed by protein tyrosine phosphatase 1B (PTP1B, encoded by <i>PTPN1</i>). Dephosphorylation at two tyrosine residues of syntaxin17 (STX17) by PTP1B reduces autophagosome-lysosome fusion while switching the cells to a secretory autophagy pathway. Both PTP1B overexpression and tumour-derived extracellular vesicles (EVs) can activate the secretory autophagy pathway in osteoblasts. Moreover, we demonstrate that osteoblastic LC3+ EVs, generated via the secretory autophagy pathway, are the primary contributor to tumour-associated bone remodelling in prostate cancer. Depletion of tumour-derived EVs secretion or genetic ablation of osteoblastic PTP1B rescues aberrant bone remodelling and lesions, highlighting the relevance between LC3+ EVs and the formation of bone metastatic niche. Our results reveal the significance of tumour-regulated PTP1B in the fate decision of autophagosomes, and propose a role ofLC3+ EVs in shaping the bone metastatic niche.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease 来自人类诱导多能干细胞衍生神经干细胞的细胞外囊泡能减轻阿尔茨海默病中与疾病相关的小胶质细胞内的促炎级联反应
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-05 DOI: 10.1002/jev2.12519
Leelavathi N. Madhu, Maheedhar Kodali, Raghavendra Upadhya, Shama Rao, Yogish Somayaji, Sahithi Attaluri, Bing Shuai, Maha Kirmani, Shreyan Gupta, Nathaniel Maness, Xiaolan Rao, James J. Cai, Ashok K. Shetty

As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.

由于目前治疗阿尔茨海默病(AD)的方法缺乏改变疾病的干预措施,因此能够抑制AD进展并维持更好大脑功能的新型疗法具有重要意义。从人类诱导多能干细胞(hiPSC)衍生的神经干细胞(NSCs)中提取的抗炎细胞外囊泡(EVs)有望成为治疗阿尔茨海默病的疾病调节生物制剂。本研究通过检测3个月大的5xFAD小鼠鼻内注射(IN)hiPSC-NSC-EVs的效果,直接解决了这一问题。通过鼻内注射 hiPSC-NSC-EVs 进入小胶质细胞(包括斑块相关的小胶质细胞),并与大脑中的星形胶质细胞体和过程相遇。单细胞 RNA 测序显示,转录组变化表明小胶质细胞和星形胶质细胞的活化程度降低。与疾病相关的小胶质细胞、NOD-、LRR-和含吡咯啉结构域蛋白3(NLRP3)-炎症体和干扰素-1(IFN-1)信号相关的多个基因在小胶质细胞中的表达量减少。向受到淀粉样β寡聚体挑战的人小胶质细胞培养物中添加 hiPSC-NSC-EVs 也会产生类似的效果。星形胶质细胞中与 IFN-1 和白细胞介素-6 信号相关的基因表达也有所减少。此外,hiPSC-NSC-EV对海马小胶质细胞的调节作用在EV处理后2个月仍持续存在,且不影响其吞噬功能。小胶质细胞集群和炎性体复合物的减少、介质浓度的降低、NLRP3炎性体活化终产物的减少、参与激活p38/介原激活蛋白激酶和IFN-1信号的基因和/或蛋白的表达以及吞噬功能的改变都证明了这种作用。海马中的星形胶质细胞肥大程度、淀粉样蛋白-β斑块和 p-tau 也有所减少。hiPSC-NSC-EV的这种调节作用还能改善认知和情绪功能。因此,通过减少不良的神经炎症信号级联、淀粉样蛋白-β斑块负荷和p-tau,对AD进行早期hiPSC-NSC-EV干预可维持更好的大脑功能。这些结果首次证明了hiPSC-NSC-EV通过诱导活化小胶质细胞和反应性星形胶质细胞的转录组变化,在AD模型中抑制神经炎症信号级联的功效。
{"title":"Extracellular vesicles from human-induced pluripotent stem cell-derived neural stem cells alleviate proinflammatory cascades within disease-associated microglia in Alzheimer's disease","authors":"Leelavathi N. Madhu,&nbsp;Maheedhar Kodali,&nbsp;Raghavendra Upadhya,&nbsp;Shama Rao,&nbsp;Yogish Somayaji,&nbsp;Sahithi Attaluri,&nbsp;Bing Shuai,&nbsp;Maha Kirmani,&nbsp;Shreyan Gupta,&nbsp;Nathaniel Maness,&nbsp;Xiaolan Rao,&nbsp;James J. Cai,&nbsp;Ashok K. Shetty","doi":"10.1002/jev2.12519","DOIUrl":"https://doi.org/10.1002/jev2.12519","url":null,"abstract":"<p>As current treatments for Alzheimer's disease (AD) lack disease-modifying interventions, novel therapies capable of restraining AD progression and maintaining better brain function have great significance. Anti-inflammatory extracellular vesicles (EVs) derived from human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) hold promise as a disease-modifying biologic for AD. This study directly addressed this issue by examining the effects of intranasal (IN) administrations of hiPSC-NSC-EVs in 3-month-old 5xFAD mice. IN administered hiPSC-NSC-EVs incorporated into microglia, including plaque-associated microglia, and encountered astrocyte soma and processes in the brain. Single-cell RNA sequencing revealed transcriptomic changes indicative of diminished activation of microglia and astrocytes. Multiple genes linked to disease-associated microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)-inflammasome and interferon-1 (IFN-1) signalling displayed reduced expression in microglia. Adding hiPSC-NSC-EVs to cultured human microglia challenged with amyloid-beta oligomers resulted in similar effects. Astrocytes also displayed reduced expression of genes linked to IFN-1 and interleukin-6 signalling. Furthermore, the modulatory effects of hiPSC-NSC-EVs on microglia in the hippocampus persisted 2 months post-EV treatment without impacting their phagocytosis function. Such effects were evidenced by reductions in microglial clusters and inflammasome complexes, concentrations of mediators, and end products of NLRP3 inflammasome activation, the expression of genes and/or proteins involved in the activation of p38/mitogen-activated protein kinase and IFN-1 signalling, and unaltered phagocytosis function. The extent of astrocyte hypertrophy, amyloid-beta plaques, and p-tau were also reduced in the hippocampus. Such modulatory effects of hiPSC-NSC-EVs also led to better cognitive and mood function. Thus, early hiPSC-NSC-EV intervention in AD can maintain better brain function by reducing adverse neuroinflammatory signalling cascades, amyloid-beta plaque load, and p-tau. These results reflect the first demonstration of the efficacy of hiPSC-NSC-EVs to restrain neuroinflammatory signalling cascades in an AD model by inducing transcriptomic changes in activated microglia and reactive astrocytes.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19. 含有 SARS-CoV-2 蛋白质的细胞外囊泡与严重 COVID-19 患者的多器官功能障碍和预后恶化有关。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1002/jev2.70001
Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.

严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)会导致2019年冠状病毒病(COVID-19),自2019年以来,全球已有700多万人因此死亡。由于高水平的IL-6与重症病例有关,因此早期评估将抗IL6抑制剂托西珠单抗作为一种潜在的治疗方法,但遗憾的是,在许多试验中,这种抑制剂未能改善存活率。此外,人们对 COVID-19 后遗症的发展知之甚少,因此需要生物标志物来了解和预测这些过程。由于细胞外囊泡(EVs)在病毒感染和免疫反应中发挥着重要作用,它们有可能成为预测和预后的生物标志物。我们从 39 名重症 COVID-19 患者中分离出了 EVs,其中 29 人接受了托珠单抗治疗,10 人被视为对照组。在治疗前住院时、治疗第 7 天和随访第 15 天采集的血液样本通过免疫印迹法评估了尖峰蛋白(S)和核头蛋白(N)的纵向表达。对动态表达进行计算,并与临床病理和实验变量进行比较。通过免疫金和成像流式细胞术验证了EV S的表达,发现其在CD9+ EV中富集。因此,在接受托西珠单抗治疗的患者中观察到了EV病毒蛋白表达的减少。此外,在抗体反应较低、高纤维蛋白原血症、呼吸功能较差、血压较高和预后较短的患者中观察到了较高的 EV S 增加。这些发现为今后研究EVs在多器官评估中的作用以及确定严重COVID-19和可能的长COVID患者的生物标志物奠定了基础。
{"title":"Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19.","authors":"Diego de Miguel-Perez, Marisol Arroyo-Hernandez, Sabrina La Salvia, Muthukumar Gunasekaran, Edward M Pickering, Stephanie Avila, Etse Gebru, Eduardo Becerril-Vargas, Sergio Monraz-Perez, Kapil Saharia, Alison Grazioli, Michael T McCurdy, Matthew Frieman, Lisa Miorin, Alessandro Russo, Andrés F Cardona, Adolfo García-Sastre, Sunjay Kaushal, Fred R Hirsch, Djordje Atanackovic, Susmita Sahoo, Oscar Arrieta, Christian Rolfo","doi":"10.1002/jev2.70001","DOIUrl":"10.1002/jev2.70001","url":null,"abstract":"<p><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and has been related to more than 7 million deaths globally since 2019. The association of high levels of IL-6 with severe cases led to the early evaluation of the anti-IL6 inhibitor tocilizumab as a potential treatment, which unfortunately failed to improve survival in many trials. Moreover, little is known about the development of COVID-19 sequelae, and biomarkers are needed to understand and anticipate these processes. Because extracellular vesicles (EVs) play an important role in viral infection and immune response, they could potentially serve as predictive and prognostic biomarkers. We isolated EVs from 39 patients with severe COVID-19, from which 29 received tocilizumab and 10 were considered controls. Blood samples, which were collected at hospitalisation before treatment, at Day 7, and Day 15 during follow-up, were assessed by immunoblot for longitudinal expression of spike (S) and nucleocapsid (N) proteins. Dynamic expression was calculated and compared with clinicopathological and experimental variables. Expression of EV S was validated by immunogold and imaging flow-cytometry, revealing an enrichment in CD9+ EVs. As a result, decreasing expression of EV viral proteins was observed in patients treated with tocilizumab. Moreover, higher increase in EV S was observed in patients with lower antibody response, hyperfibrinogenemia, lower respiratory function, higher blood pressure and shorter outcomes. These findings lay the foundation for future studies characterizing the role of EVs in multiorgan assessment and identifying biomarkers in patients with severe COVID-19 and possible long COVID.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 11","pages":"e70001"},"PeriodicalIF":15.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry 利用体内流式细胞仪实时监测细胞外小泡(sEVs)。
IF 15.5 1区 医学 Q1 CELL BIOLOGY Pub Date : 2024-10-23 DOI: 10.1002/jev2.70003
Fuli Zhang, Xin Lu, Xi Zhu, Ziwen Yu, Weiliang Xia, Xunbin Wei

Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.

细胞外囊泡(EVs)是由双层脂膜组成的囊泡结构,由活细胞释放。越来越多的证据表明,小EVs(sEVs)可以介导特定形式的细胞间通信,从而证明了它们的功能。sEVs 未来的应用前景广阔,不仅可以作为诊断标志物,还可以作为治疗药物。然而,sEVs 应用于临床的最大困难在于人们目前对其了解甚少,尤其是对其体内行为的了解。在这项研究中,我们提供了一种基于体内流式细胞术(IVFC)监测血液循环中 sEVs 的新方法。我们证明,IVFC 信号基线的高度与 sEVs 的浓度成正比。此外,我们还发现 IVFC 信号的峰值是由 sEVs 的聚集或细胞摄取产生的。对 sEVs 从血液中清除的体内监测表明,与非 PEG 化 sEVs 相比,PEG 化 sEVs 在血液循环中的停留时间更长,聚集程度更低。这些研究表明,IVFC 能够对循环中的 sEVs 进行实时体内监测,从而为了解 sEVs 的药代动力学和细胞靶向能力提供有价值的信息。
{"title":"Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry","authors":"Fuli Zhang,&nbsp;Xin Lu,&nbsp;Xi Zhu,&nbsp;Ziwen Yu,&nbsp;Weiliang Xia,&nbsp;Xunbin Wei","doi":"10.1002/jev2.70003","DOIUrl":"10.1002/jev2.70003","url":null,"abstract":"<p>Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 10","pages":""},"PeriodicalIF":15.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Extracellular Vesicles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1